
The upper memory area (the area between 640K and 1024K) is normally reserved for use by
your system's hardware. On most PCs, there are "holes" in this area--upper memory
addresses that are not associated with any physical RAM or ROM chips. QEMM maps memory
from outside the first megabyte of RAM into the vacant areas. In addition, QEMM uses
advanced techniques to reclaim some parts of upper memory that were previously reserved
for use by hardware. High RAM is QEMM's name for the memory mapped into the upper
memory addresses. Once memory is mapped into upper memory addresses, QEMM can use
that High RAM to load TSRs, device drivers, and parts of DOS. By loading these items into
upper memory instead of    conventional memory, more conventional memory is available for
your other programs.

The    XBDA (Extended BIOS Data Area) is a RAM region on IBM PS/2s and some PC clones
that contains hardware information beyond that contained in the BIOS data area. The XBDA
is normally located at the top of conventional memory and can be an obstacle to effective
memory management.

Paradox (Borland)
Clipper (Computer Associates)
DESQview (Quarterdeck)
Folio Views (Folio Corp.)
Generic CAD (AutoDesk)
Lotus 1-2-3 2.x (Lotus)
Lotus Agenda (Lotus)
FoxPro (Microsoft)
Quattro Pro (Borland)
Wildcat BBS (Mustang)
Turbo C (Borland)
DESQview/X (Quarterdeck)
Intellicom (Liberation Enterprises)
Geoworks (Geoworks)
Lotus Magellan (Lotus)
Lotus Symphony (Lotus)
PC-Write (Quicksoft)
Q & A (Symantec)
WordPerfect 5.x and 6.x (WordPerfect Corp./Novell)
Harvard Graphics (SPC)
dBASE (Borland)

Allocation Method

This drop-down list box lets you decide how QEMM’s FreeMeg feature safeguards the first
megabyte of memory while other Windows programs are loading.

If you choose Original, which is QEMM’s default, then FreeMeg allocates nearly all of the
first megabyte while Windows programs are loading, to prevent some programs from
monopolizing precious first-megabyle memory that other Windows programs may need to
load.    When using the Original method, FreeMeg first allocates all chunks of first-megabyte
memory larger than 32K; then all chunks bigger than 16K; then all chunks bigger than 8K;
and so on, until all chunks of first-megabyte memory larger than 512 bytes (or whatever
number you set the FreeMeg Block Size to) are taken.

If you choose Worst-Case, then FreeMeg allocates all first megabyte memory while
Windows programs are loading, then keeps only every other 512-byte block (or whatever
number you set the FreeMeg block size to) and frees the rest of the 512-byte blocks. This
method makes it impossible for any program to monopolize a large region of first-megabyte
memory, but still leaves behind a great many small chunks of memory, in case Windows
needs lots of small bits of first-megabyte memory for the data blocks it uses to keep track of
programs. However, this method may cause your Windows programs to load more slowly.
You probably won’t need to use the Worst-Case option, but you can try it if a particular
program cannot load with FreeMeg enabled.

If you choose None, QEMM disables the FreeMeg feature. This makes it possible for a
Windows program to monopolize first-megabyte memory and prevent other Windows
programs from loading, no matter how much memory remains on the system.

Overview of QEMM Setup

QEMM Setup makes it easy to enable or disable QEMM's optional features, as well as add or
delete QEMM's fine-tuning and    troubleshooting parameters. QEMM Setup also provides you
with hints on using QEMM and lets you view the QEMM READ ME file for late-breaking
information and technotes covering a variety of technical issues.    QEMM Setup can also
assist you in    troubleshooting any problems that might occur.
QEMM Setup is organized into five tabbed pages:   

      Features
      Compatibility
      QDPMI
      DOS-Up
      Windows

Each page includes a Reset button which discards any changes you have made on that
page since you last saved your QSetup settings.    The Reset All button at the bottom of the
screen discards changes made to all of the pages.    The Windows page also includes a
Defaults button which restores the settings on this page to their default values.    After
making changes to any of the pages, you must select Save to store your changes.

QEMM Setup gives you help every step of the way.    When you select an option from a menu,
you will see an explanation of what the option does. If you still have questions, press F1 or
select the Help button for assistance.

Block Size

The Block Size field indicates the largest size block that QEMM’s FreeMeg feature will leave
available when it safeguards first-megabyte memory while Windows programs are loading.
By default, this field is set to 512 bytes.    A smaller Block Size value will safeguard even tiny
chunks of first-megabyte memory, but may slightly slow down the loading of programs; a
higher value may speed up program loading slightly, but leaves more first-megabyte
memory at risk. You can try increasing the Block Size value if a particular program cannot
load with FreeMeg enabled.

Booting Your System Without QEMM
To reboot your PC without QEMM's memory management follow these steps:

      Reset your system by pressing the Ctrl, Alt, and Del keys simultaneously, by pressing
the reset button, or, if necessary, by turning the machine on and off.

      When you hear a beep, hold down the Alt key until the boot sequence stops.
      If you are using QEMM's DOS-Up feature, you will see a message asking if you want to

unload the DOSDATA device driver. Press Esc to unload DOSDATA, then immediately press
and hold down Alt again until you see the following message:

QEMM: Press Esc to unload QEMM or any other key to continue with
QEMM.

Press the Esc key.

QEMM will not load, so programs will not load into High RAM; however, your system will be
usable.

Return to Hints Main Menu.

Bus-mastering Devices and QEMM

Quarterdeck Technical Note #121

Note: All references to 386 computers or to the 80386 processor, unless otherwise stated,
refer to 386 and higher processors.

This note is divided into two parts.    The first section on troubleshooting is for those users
who believe that they are having problems with QEMM and a SCSI hard drive.    Section two
provides information on bus-mastering issues.

SECTION ONE:    Troubleshooting

Refer to the troubleshooting section of the QEMM manual, or in the technical note QEMM
GENERAL TROUBLESHOOTING (TROUBLE.TEC) for instructions on how to boot your machine
without QEMM.

1) If your machine locks immediately after posting the banner for QEMM386, check to see if
the DB=2 parameter is on the QEMM386.SYS line in CONFIG.SYS. If this parameter is not
present, add it. If your machine now works, you're done, and you may read the information
section below. If your machine still fails, continue with Step 2.

2) Add the parameter VDS:N to the QEMM line, and reboot. If this solves your problem,
proceed to Step 3.

3) Remove VDS:N parmeter (if one is present) from the QEMM line, and immediately before
the QEMM386.SYS place the line

DEVICE=C:\QEMM\FIXINT13.SYS /STACKSIZE=384

FIXINT13.SYS is in the QEMM directory in QEMM 7.5 and later. It is also available on the
Quarterdeck BBS at (310) 309-3227. If this solves your problem, you're done. If this does not
solve your problem (but the VDS parameter did), replace it. In either case, you may now
choose to read the information section below.

SECTION TWO:    Information on Bus-mastering

Q: What is a bus-mastering device?

Bus-mastering devices are peripherals, typically hard drives, that do their own direct
memory addressing (DMA) without going through the machine's Central Processing Unit
(CPU) or its DMA controller. The most common bus-mastering devices are SCSI hard disk
controllers, but other types of devices can be bus-mastering as well. Bus-mastering ESDI
disk controllers and video cards do exist, and an increasing number of bus-mastering
network cards are available as well. While bus-mastering devices are high-performance
devices and quite often found on 386 and higher systems, they are, unfortunately, by design
incompatible with one of the most common operating modes of the 80386 processor--the
Virtual 86 mode.

Specifically, the problem is that the device puts data into absolute memory addresses and
assumes that the contents of those memory addresses will always remain constant.
However, on a 386 processor in Virtual 86 mode, this is often an incorrect assumption. When

a 386 memory manager such as QEMM, or a 386 operating environment such as DESQview
386 or Microsoft Windows Enhanced Mode is used, it typically associates physical memory
with linear or "logical" addresses. QEMM does this, for instance, to make High RAM appear at
addresses between 640K and 1MB. When a bus-mastering device tries to access data in
memory, it presumes that physical and logical addresses are the same. In Virtual 86 mode, a
given memory address can, at any moment, contain code or data from various regions of
physical memory.

If you are using a bus-mastering device on a 386 that is in Virtual 86 mode and memory
paging is occurring (when QEMM is providing High RAM; when QEMM is providing expanded
memory; when DESQview 386 or Microsoft Windows is switching from one virtual machine to
another), your machine will probably hang when you use the bus-mastering device, unless
certain precautions are taken.

Quarterdeck first became aware of the problem from customers who had bus-mastering SCSI
hard disk controllers. Users reported that they could boot their machines and start up
DESQview. As long as they ran only one application, their system ran fine. As soon as they
opened a second application, the system would hang. The problem was also seen by users
who were not using DESQview, but who were using the LOADHI feature of QEMM. In both
cases, the hang would occur because the disk controller assumed that memory really
existed at the address that it was accessing. In theory, this could have caused data
corruption, but in reality it never did. The memory corruption was typically so extensive that
the systems simply hung as soon as a change in the memory map occurred. Other 386
memory managers exhibited the same symptoms, as did Windows version 3.x when run in
Enhanced Mode. QEMM solved the problem in its own code, but this solution was not
adopted by Windows when it entered Enhanced Mode (see the reference to SMARTDRV in
item 4 below).

Q: What is the best approach to running bus-mastering devices?

There are several possible solutions:

1) THE BEST SOLUTION: Contact the maker of your bus-mastering device and see whether
the manufacturer supports the VDS (Virtual DMA Services) specification. VDS is now an
industry-wide specification supported by IBM, Microsoft and Quarterdeck, as well as many
other hardware and software suppliers. VDS, either provided in the device's ROM or as a
device driver, allows a bus-mastering device to find the real physical address of its data
when the processor is in Virtual 86 mode. QEMM versions 5.00 and later support the VDS
specification. A VDS driver provides the best solution to this problem in terms of reliability,
speed and memory efficiency. A VDS driver may be loaded into High RAM if it appears in the
CONFIG.SYS file after the QEMM386.SYS line, but you may need to manually add a DB=2
parameter to the QEMM386.SYS device line to accomplish this if you are not using QEMM 7.5
or later; see section 6 below.

2) Make sure you're using QEMM version 7.5 or later. QEMM version 7.5 automatically
created a buffer when it detects an addressing problem with a bus-mastering hard drive
controller, and this buffer's support continues into Microsoft Windows.

3) Similarly, the drivers of many bus-mastering hard disks have proprietary (that is, non-
VDS) buffering options. The best course in this case is to check the documentation for your
disk controller to see if the driver has a parameter to set up buffering for disk operations.
Some drivers will also document parameters that are specific to 386 operations. For
example, the early Adaptec drivers SCSIHA.SYS and AHA1540.SYS included both 386 and
disk buffering options invoked by the parameters "/v386" and "/b:64." "/v386" stands for
virtual 386; "/b:64" allocates a 64k buffer, for DMA.

Unlike the drivers in (1) above, these drivers do not provide VDS services. If you are using a
driver such as this, make sure that it is not loaded high. The purpose of such a driver is to
provide buffering into physical addresses that are the same as logical addresses; if the
program is loaded high, its buffer will be in logical addresses that are not the same as their
physical addresses. Please read the section below titled "Making Sure Your Device Driver
Loads Low".

4) Check the documentation for your bus-mastering device and see if it can be configured to
use the BIOS or any one of the standard DMA channels. QEMM can correct the problem if the
BIOS or standard DMA channels are used.

5) As mentioned above, bus-mastering hard drives can also cause problems for Microsoft
Windows 3. Microsoft's solution is in its SmartDrive disk cache. SMARTDRV (and other disk
caches) contain code that can buffer direct memory access. Before QEMM 7.03, QEMM's VDS
services were almost completely disabled when you entered Enhanced mode, so
SMARTDRV's buffering was needed to ensure that no bus-mastering conflicts occured inside
of Microsoft Windows. If you are using QEMM 7.5 or later, QEMM's VDS services and disk
buffering will function properly while Microsoft Windows Enhanced mode is running, so
loading SMARTDRV is not necessary.

a) The versions of Smartdrv that ship with Microsoft Windows 3.1, DOS 5, and DOS 6
have two functions: to provide disk caching through a module loaded in
AUTOEXEC.BAT, and to provide buffering for SCSI hard drives through a module
loaded in CONFIG.SYS. If you are using Windows 3.1 AND a bus-mastering hard
drive and you are NOT using any of the options numbered 1 through 4 above,
make sure that the following line appears in CONFIG.SYS:

DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER

(If your path to SmartDrive differs, change C:\WINDOWS to the correct path.)

b) Windows 3.0 and DOS 5 shipped with SmartDrive version 3 or lower. If you are
using one of these versions of SmartDrive, make sure that the following line
appears in your CONFIG.SYS file:

DEVICE=C:\WINDOWS\SMARTDRV.SYS

(If your path to SmartDrive differs, change C:\WINDOWS to the correct path.)

Please read the section below titled "Making Sure Your Device Driver Loads Low".

6) QEMM has a DB=xx (DISKBUF=xx) parameter that can prevent QEMM-SCSI problems at
the expense of a little conventional memory. "xx" is the number of K used for buffering. Any
value for xx is sufficient to correct the problem. DISKBUF=2 is fine for most cases.
Configuring QEMM with a DISKBUF greater than 2 might improve disk performance, but
setting DISKBUF to more than 10 is probably a waste of memory.

Q: How does QEMM's detection of bus-mastering hard drives work?

QEMM will detect a bus-mastering hard drive and create a disk buffer automatically as long
as QEMM itself is loaded from that bus-mastering hard drive. If you load a driver that
provides VDS (Virtual DMA Services) support BEFORE you load QEMM, QEMM will not create
the disk buffer. In cases where QEMM automatically creates this buffer, it does not add a
DISKBUF parameter to the QEMM386.SYS line. QEMM's automatic detection of bus-mastering

hard disks is active only when the RAM parameter is specified on the QEMM386.SYS line in
the CONFIG.SYS file. You can disable QEMM's automatic disk buffering by using the
QEMM386.SYS parameters DISKBUF=0, but there is usually no reason to disable this feature.
If you have a bus-mastering hard disk that you do not load QEMM from, QEMM will not detect
bus-mastering conflicts with it, and you must either use the disk controller's VDS support or
specify the DISKBUF=nn (DB=nn).

Use of the DB= parameter will not help if the bus-mastering device is something other than
a hard disk. If your bus-mastering device is not a hard disk then the solutions above,
especially #1, are your only options.

If your bus-mastering hard disk controller uses a VDS device driver that is loaded after
QEMM386.SYS, QEMM will still create a 2K disk buffer, because the VDS support will not be
active when QEMM loads. This disk buffer will be necessary in most circumstances, because
the Optimize program would otherwise fail when it tried to load the VDS driver into High
RAM. However, you may wish in this circumstance to reduce the size of the disk buffer as
much as possible by placing the DISKBUF=1 parameter on the QEMM386.SYS device driver
line. The smaller disk buffer is preferable here, because the disk buffer will never again be
used after the VDS driver loads, and a bigger disk buffer uses valuable conventional
memory.

If you are both disabling automatic disk buffering (with the DISKBUF=0 parameter) and
creating a disk buffer for the page frame (with the DISKBUFFRAME=xx parameter), you must
place the DISKBUF=0 parameter before the DISKBUFFRAME=xx parameter on the
QEMM386.SYS line in the CONFIG.SYS file. If you reverse this ordering, automatic disk
buffering will still be disabled, but the disk buffer for the page frame will not be created.

Q: I don't have a VDS driver, and I think that my proprietary device driver or my
disk cache should be loaded low. How do I prevent    it from loading high?

For double-buffering to work properly, the device driver for your bus-mastering hardware
must be loaded in conventional memory, where physical and logical addresses are almost
always the same. You must therefore make sure that it loads low if you are depending on it
to provide DMA buffering. We will use SMARTDRV as an example of such a program. Change
the instructions below to fit your device driver.

Ensure that there is no LOADHI command preceding SMARTDRV on the line which loads it.

OPTIMIZE will very likely try to load SmartDrive high, unless you instruct it not to do so. This
is most easily done as follows:

1) Using a text editor, create a text file called OPTIMIZE.NOT in the \QEMM directory.
Systems with DOS 5 and later can type "EDIT OPTIMIZE.NOT" from the \QEMM
directory to create the file. If such a file exists already, simply open it for editing.

2) Put a new line in OPTIMIZE.NOT that says:

SMARTDRV

Do not specify a pathname nor an extension to the file name. Save the file and exit
the editor.

3) From now on, OPTIMIZE will not affect the SMARTDRV line in either CONFIG.SYS or
AUTOEXEC.BAT. As long as SMARTDRV is not being loaded high already, it will not load
high during future OPTIMIZE sessions.

Q: I know I have a bus-mastering device on my computer, but I haven't seen any
problem. Why not?

It's possible that your bus-mastering device uses a standard DMA channel for DMA
operations. QEMM automatically supports bus-mastering when standard DMA channels are
used.

Your bus-mastering device may have been shipped with a VDS driver in its ROM. Some bus-
mastering hard disk controllers ship with drivers that make VDS calls, and these drivers do
not require the DB parameter or any other buffering. We expect that most bus-mastering
devices will eventually include VDS drivers and, therefore, will not exhibit any problems
when run in Virtual 86 mode.

Return to Technotes Main Menu.

Compression Buffer Size

The QEMM MagnaRAM feature, which gives you more Windows memory by compressing
data, depends on having a RAM buffer that it allocates out of the physical memory (installed
RAM) on your system. By default, MagnaRAM takes a buffer equal to one-quarter of the
physical memory that is available when it starts up. The minimum setting for this buffer is
32K; the maximum is the amount of available physical memory.

In general, if you increase the size of this buffer, MagnaRAM will be able to do more data
compression and provide more extra Windows memory, but the system may run a bit
slower, especially when starting a new program. Conversely, if you decrease the size of the
buffer, MagnaRAM will be able to provide less additional Windows memory, but the system
may speed up a bit. The ideal size of the buffer for your system will depend on which of
MagnaRAM's benefits--speed or extra memory--means more to you.

Compression Threshold

The Compression Threshold field tells QEMM whether to compress all the data in the
MagnaRAM RAM buffer, or just a part of it. The number in the field is a percentage that
indicates how much of the RAM buffer should be left uncompressed. The default setting, 0,
means that QEMM will try to compress all the data in the buffer. The maximum setting for
this field is 100, which means that QEMM will only start compressing data when the buffer is
100% full, and that it will stop compressing when the contents of the buffer have shrunk to
less than 100% of its capacity.

Any setting of this field is a tradeoff between more memory and better performance. A
bigger value means that MagnaRAM can create slightly less additional Windows memory, but
that performance will be improved slightly. A smaller value means a bit more Windows
memory and a bit more performance overhead.

Contacting Quarterdeck's Technical Support Department
As a registered owner of QEMM, you are entitled to 90 days of prepaid technical support.
You can receive support by fax, mail, or phone. If you have a modem, you can get support by
contacting Quarterdeck's CompuServe forum or through several other public message
forums. Your 90 days of prepaid support starts with your first call, letter, fax, or online
communication in reference to QEMM.
Before contacting technical support, we encourage you to see Appendix A of the QEMM
Reference Manual for troubleshooting information, and Appendix B for a list of technical
bulletins (technotes) included with QEMM. These technotes are placed in a directory called \
QEMM\TECHNOTE during installation of QEMM. You can view technotes from this help file or
from within QEMM Setup by selecting Technotes from the main menu.

The troubleshooting guide and the technotes give step-by-step solutions to several common
problems. Also, be sure to see the file READ.ME for late-breaking information. You can view
the READ.ME file from this help file or from within QEMM Setup by selecting Technotes from
the main menu.

For additional information on contacting technical support see the Passport booklet
included with QEMM or read the technote CONTACT.TEC.

Quarterdeck also offers VIP maintenance and support coverage.    See your Passport
brochure for information.

Return to Hints Main Menu.

Contacting Technical Support

Quarterdeck Technical Note #144

1-800-ROBOTECH

1-800-ROBOTECH (1-800-762-6832) is our automated technical support hotline. This free service is
available 24 hours a day, 7 days a week (including holidays). Using a touchtone telephone, you can get
answers to a variety of commonly asked questions, including product information,
installation,configuration, and troubleshooting tips.

Navigation is easy! Once connected to 1-800-ROBOTECH, simply press the number on your telephone
keypad that corresponds to the menu selection you desire. Below are some helpful shortcutkeys:

       MENU COMMANDS:
 Press *P to go to the Previous menu.
 Press *T to go to the Top system menu.
 Press *C to hear the Current level.
 Press *J and the 4 digit level number to Jump to that menu
 level.

 MESSAGE COMMANDS:
 Press N to hear the Next part of a message.
 Press P to hear the Previous part of a message.
 Press A to hear the message Again.
 Press T to go to the Top or beginning of a message.
 Press # to pause a message and # again to resume.

For more information, including a complete list of 1-800-ROBOTECH topics, refer to Quarterdeck
Technical Note #272, "1-800-ROBOTECH" (ROBOTECH.TEC).

CompuServe

With over 2 million subscribers, CompuServe is the most popular computer information service in the
world. And with good reason! CompuServe provides electronic mail, online reference material, up-to-
date news services, travel services, weather information, online shopping, investor services, games, over
500 special interest forums, and much more.

 If you are already a member of CompuServe, just type GO QUARTERDECK at any ! prompt to access
our forum. Private e-mail is accepted at 76004,2310.

FREE INTRODUCTORY MEMBERSHIP!

If you are not a current member of CompuServe, you are entitled to a free introductory membership.
This offer includes a personal user ID and password, $15 usage credit, and a complimentary subscription
to CompuServe magazine.To receive this membership and go online today, call (800) 524-3388 and ask
for Representative #372. For more information about our CompuServe forum, refer to Quarterdeck
Technical Note #134, "Technical Support viaCompuServe" (CIS.TEC).

Quarterdeck White Papers

Individual Quarterdeck Technical Notes cover a specific topic of interest to users of Quarterdeck products.
Whether you need assistance in correcting a problem or you simply want a better understanding of how
something works, these notes are an invaluable source of information.

Our complete technical note library is available on most of the online services listed above. Some of the
more common technotes are included in this online help file. These technical notes are collectively
referred to as the Quarterdeck White Papers.

QWHITE.COM, our complete technical note library and reader, is also available on most of the online
services listed above. For more information about QWHITE.COM, refer to QuarterdeckTechnical Note
#236, "Quarterdeck White Papers" (QWHITE.TEC).

Q/FAX

Our innovative Q/FAX system gives you access to our complete technical note library. Quarterdeck
Corporation was the first software company to offer this 24-hour outbound, self-faxing system! Using the
telephone attached to your FAX, you can access our Q/FAX service by dialing (800) 354-3202 or (310)
309-3214.

For an updated list of technical notes available, request document #100. This master list is updated as
new technical notes become available.

Other Online Services

Online services provide a convenient way to contact QuarterdeckTechnical Support. Our electronic
forums are staffed by our most senior technical support representatives. In these forums,you will find
discussions of the latest issues, our complete technical note library, product upgrades, development tools,
user-submitted utilities, and much more!

Although many of these forums offer private e-mail, we recommend posting your messages publicly
whenever possible. In addition to Quarterdeck Technical Support, there are many users in these forums
who are eager to help. Because these public messages can be read by anyone, you may get a faster
response.

If you have a modem, the following options are available to you:

1. Quarterdeck BBS

The Quarterdeck Bulletin Board System (BBS) is available 24 hours a day, 7 days a week. Our BBS
has 8 nodes on rotary lines, which support communications up to 14,400 bps. There commended
modem settings are 8 bit word length, no parity, and 1 stop bit. Our BBS is also a SmartNet node.
You can reach the Quarterdeck BBS at (310) 309-3227. For more information about our BBS, refer to
Quarterdeck Technical Note #105, "Using The Quarterdeck BBS" (BBS.TEC).

2. Internet - Messages and Anonymous FTP Site

Public messages: comp.os.msdos.desqview

Please note that the above message group is not run by Quarterdeck, but our senior technical
support representatives do monitor the messages.

Private e-mail: support@qdeck.com

To access our anonymous FTP site, use the following information:

Host: qdeck.com (149.17.8.10)
Login: anonymous
Password: Type your e-mail address here (e.g., johndoe@netcom.com).

Note: Refer to the README file in ~\pub for a list of files available for download from
our FTP site.

 3. BIX (Byte Information Exchange)

Public messages: JOIN DESQVIEW
Private e-mail: QOS.REP2

For more information about BIX, refer to Quarterdeck Technical Note #160, "Technical Support via
BIX (Byte Information eXchange)" (BIX.TEC).

4. MCI Mail

Private e-mail: QUARTERDECK

 5. SmartNet

Public messages: DESQview conference

SmartNet is a network of individual BBSes that exchange messages and files. The Quarterdeck
BBS is a SmartNet node, or member. If a BBS in your area is a SmartNet node, and carries the
DESQview conference, you can contact Quarterdeck Technical Support via that BBS. The
advantage of these echoed conferences is that you can contact us via a local phone call, rather than
dialing our BBS directly which may be long distance. If your local SmartNet node does not carry the
DESQview conference, send a note to the Sysop. If enough interest is shown, the Sysop may
consider adding the conference to that system.

For more information about SmartNet, refer to QuarterdeckTechnical Note #159, "Technical Support
via Smartnet" (SNET.TEC)

6. Fidonet

Public messages: DESQview echo.

FAX

All FAXes are responded to within 24 hours of receipt (weekends and holidays excluded). Please
include your telephone number and either your product serial number or customer VIP number on all FAX
correspondence. FAX all technical support inquiries to (310) 309-3217.

Mail a Letter

All letters are responded to within 24 hours of receipt (weekends and holidays excluded). Please include
your telephone number and either your product serial number or customer VIP number on all mailed
correspondence. Mail all inquiries to the following address:

Quarterdeck Corporation
Technical Support
13160 Mindanao Way, Third Floor
Marina del Rey, CA 90292-9705 USA

Telephone Support Hotline

Quarterdeck Technical Support can be reached at (310) 309-4250 during the following hours:

Monday - Thursday 7:30 a.m. - 4:00 p.m. Pacific Time
Friday 10:00 a.m. - 4:00 p.m. Pacific Time

Return to Technotes Main Menu.

      QEMM Setup
Contents

Overview
Features
Compatibility
QDPMI
DOS-Up
D*Space
Windows
Reviewing and Editing Proposed Configuration Files
Hints, Technotes, and Read Me

For Help using the Online Help, see Help About Help.

Copy ROMs to RAM
This option enables or disables QEMM's ability to speed up ROMs by copying their program
code into RAM where it will execute more quickly.
To enable or disable this feature:

To have QEMM copy ROM code into faster RAM, select Yes.
To prevent QEMM from copying ROM code into RAM, select No.

Yes adds the ROM parameter to the QEMM386.SYS line in CONFIG.SYS; No removes the ROM
parameter.
Why you may want to copy ROMs to RAM:

 If your system does not already speed up ROMs by copying them into faster RAM,
enabling this option may speed up some system operations, particularly writes to the
screen by programs that use BIOS or DOS video calls (like DOS's COMMAND.COM).

Why you would not    want to copy ROMS to RAM:
Your system may already copy ROMs to RAM--this feature is already provided if your

system has shadow memory.
On some systems, ROMs may not work properly when copied to RAM; floppy disk

drives may malfunction on a few systems if the ROM code that controls the floppy disk
drives is speeded up. In this case, you can use the QEMM Analysis procedure to help
determine which areas of ROM can be copied to RAM (for information see Chapter 9 of the
QEMM Reference Manual).

This feature diminishes QEMM's memory pool by the amount of memory taken up by
your ROMs - usually about 96K.

On page 14, the QEMM User Guide describes the buttons on the bottom of    the QEMM Setup
screen.    On the right side of the tab window (or    property page), the Reset button restores
your settings to the values    that were in force when you entered that page.    The Default
button (which appears only on the Windows property page) sets the options for FreeMeg,
Resource Manager, and MagnaRAM to their default settings.    The Help button provides
context-sensitive online help for the displayed property page.

On page 27, the QEMM User Guide incorrectly suggests that an exit button appears on the
right side of the QEMM User Interface screen.    To exit the program, select Exit from the File
menu or press Alt - F4.

 QEMM Setup Online Help

 Designed and Written By

 Phil Glosserman
 Kathy Hand
 Bob Parker
 and
 Dan Sallitt

QEMM's VCPISHARE:Y (VS:Y) is not compatible with the DESQview/X SERVER module.    Do
not use the VS:Y parameter if you are using DESQview/X.

Norton Cache (Symantec)
Cache86 (Aldridge)
PC-Kwik (PC-Kwik)
Hyperdisk (Hyperware)

If you are using real-mode Novell network drivers in Microsoft Windows 95, Microsoft
recommends that you set the LOADTOP=0 option in the MSDOS.SYS text file.    (Note that
Windows 95's text-based MSDOS.SYS is NOT the same as the MSDOS.SYS DOS component in
previous versions of DOS.)    If you choose Windows 95's default LOADTOP=1 setting to load
the command processor at the top of conventional memory, you may experience corruption
of the DOS environment, which includes values for PROMPT, PATH, and SET statements.

This happens irrespective of the presence of Quarterdeck software.    However, for similar
reasons, if you are using QEMM's DOS-Up option, you should always choose to load
COMMAND.COM low.

DOS=HIGH is a CONFIG.SYS statement that loads parts of the DOS kernel into the HMA (the
first 64K of extended memory). The HMA is available only if you are using DOS version 5 or   
or higher (and is not available for DR DOS 6 users). The amount of DOS that gets moved to
the HMA depends on your configuration, but is generally at least 40K.

The most common reason not to enable the DOS=HIGH feature is if you run a program that
uses the HMA more efficiently than DOS, like DESQview or DESQview/X. By eliminating the
DOS=HIGH statement in CONFIG.SYS you may be able to have more available memory
inside DESQview and DESQview/X windows. For information on maximizing the memory
inside DESQview and DESQview/X windows, select "Technotes" on the QEMM Setup menu.
When the next menu displays, select "QEMM and DESQview or DESQview/X.

Exclude stealthing a particular ROM
You use this option to tell QEMM not to stealth a particular ROM. You should tell QEMM not to
stealth a particular ROM only when attempting to solve problems with the StealthROM
feature.
To use the feature that excludes stealthing of a particular ROM:

Select Address to exclude a particular ROM from being Stealthed. Then, click in the
adjacent field and type the starting address of the ROM you want to prevent from being
Stealthed.

Select None if you have excluded a particular ROM from being Stealthed and you
now want to remove this exclusion.
If you specify that a particular ROM should not be Stealthed, QEMM Setup will place the
XST=xxxx parameter on the QEMM386.SYS line in your CONFIG.SYS file, causing QEMM not
to stealth that ROM. You can get the starting addresses of all stealthed ROMs from the
Manifest QEMM Overview screen. In general, video ROMs are located at C000 (or at E000 on
Micro Channel systems); system ROMs at F000. If you have a disk ROM (many systems do
not), it will generally be located at an address between C800 and E000.
If possible, it is usually more memory-efficient to solve StealthROM problems with the
EXCLUDE parameter than with the EXCLUDESTEALTH parameter.

DoubleSpace is the disk compressor that comes with DOS versions 6.0 - 6.20.

If you are using MS-DOS 6's DoubleSpace or DriveSpace, you can save 31K-49K of memory by using
QEMM's Stealth D*Space feature to relocate the DoubleSpace or DriveSpace device driver in expanded
memory. See Chapter 5 of the QEMM Reference Manual for details.

DriveSpace is the disk compressor that comes with DOS 6.22 (or later).

The EMS page frame is a 64K area, usually in upper memory, used by programs to access
expanded memory. QEMM also uses the page frame to enable its StealthROM and Stealth
D*Space features.

Edit QEMM device line

This selection lets you manually edit the QEMM device line. If the QEMM parameters do not
fit in the visible field on screen, an arrow at the left or right of the field indicates the
presence of off-screen parameters. The field will scroll when you use the arrow keys or type

Enable MagnaRAM Memory Compression

This check box determines whether QEMM’s MagnaRAM feature, which gives you more
Windows memory by compressing data, is active. If you disable this feature by clearing this
box, you will need to restart Windows before the change takes effect.

Disabling MagnaRAM’s memory compression is not the same thing as disabling MagnaRAM
altogether. Even when memory compression is disabled, QEMM will still allocate
MagnaRAM’s RAM buffer, and it will still send swapped-out memory to the buffer until it is
full. To remove MagnaRAM from memory, use the Uninstall MagnaRAM option.

Enable QuickBoot
This selection enables or disables QEMM's feature that speeds up warm reboots (i.e., when
you reboot by pressing Ctrl+Alt+Delete).
To enable or disable QuickBoot:

To enable QuickBoot, select Yes.
To disable QuickBoot, select No.

If you enable QuickBoot, you can also enable the Timeout feature and specify a number of
seconds in the adjacent field. The timeout feature tells QEMM to post a QuickBoot menu for
xx seconds (where xx is a number from 1 to 99) when you warm boot your system. The
QuickBoot menu lets you choose which drive to boot from. When the timeout value of xx
seconds expires, QEMM automatically reboots the system without your intervention. The
default timeout value is 0, which tells QEMM to warm boot without posting the Quickboot
menu.
To enable the Timeout feature:

Select Timeout.
Click on the seconds field and type the number of seconds to wait for user input

before automatically booting using the default boot drive.

Enable Resource Manager Option

QEMM’s Resource Manager feature lets Windows 3.1 users fit more programs into memory
before running out of precious system resources. The Resource Manager feature stores some
system resources in a different place in memory, bring them back into the system resources
area when they are needed.

If any program does not function properly when the Resource Manager feature is enabled,
you can disable Resource Manager by clearing this check box, saving the change, and
restarting Windows. Before disabling Resource Manager, you should try telling QEMM to
disable Resource Manager for the particular program that is failing.

Enable or Disable DOS-Up

QEMM's DOS-Up feature loads into High RAM certain parts of DOS that would
normally load into conventional memory. Depending on how your system is
configured, DOS-Up can free between 7-70K of conventional memory for running
DOS programs.   
To enable or disable DOS-Up:

Select Do not use DOS-Up to disable DOS-Up.
Select Use all the features of DOS-Up to have DOS-Up load as much of DOS as

possible into upper memory.
Select Use the specified features of DOS-Up if you want to choose the parts of

DOS that DOS-Up should load into High RAM. Then, click on the features you want to load
into High RAM.
IMPORTANT:      Once you enable or disable DOS-Up, you must reboot your PC for the

change to take effect.
Parts of DOS that DOS-Up can move out of conventional memory are:

DOS resources (FILES, BUFFERS, FCBS, STACKS, LASTDRIVE). The amount of
memory that these resources take up varies with your configuration. See Manifest's DOS
Overview screen for details.

COMMAND.COM (the DOS command processor). Its size varies in different versions
of DOS. It is normally smaller than 5K.

DOS data (the DOS data structures that are not moved out of conventional memory
by the DOS=HIGH statement). If you do not use DOS=HIGH, DOS-Up will additionally load
into upper memory those parts of the DOS kernel that DOS=HIGH would have loaded into
the HMA.

DOS=HIGH is a feature of DOS version 5 and later (it is not a DOS-Up feature, but
you can enable or disable it from QEMM Setup). DOS=HIGH loads the DOS kernel, buffers
and part of COMMAND.COM into the HMA, the first 64K of extended memory. The amount of
DOS that gets moved to the HMA depends on your configuration, but is generally at least
40K. We recommend that you use DOS=HIGH unless you routinely run a program (such as
DESQview or DESQview/X) that can use the HMA more efficiently than DOS. If you use
DOS=HIGH, you can still use the features of DOS-Up.

If you are using DR DOS 6 or Novell DOS 7, you cannot use DOS=HIGH. For
information on using DOS-Up with DR or Novell DOS, see NW&DRDOS.TEC.
DOS-Up makes three changes to your CONFIG.SYS file. The DOSDATA.SYS driver, which loads
at the beginning of the CONFIG.SYS, prepares the system for DOS-Up. The DOS-UP.SYS driver
loads the DOS kernel, data, and resources into High RAM. And your SHELL statement is
modified so that LOADHI.COM can put COMMAND.COM in upper memory. If you have no
SHELL statement, DOS-Up creates one for you.

QDPMI

QEMM Setup's QDPMI page lets you enable or disable the Quarterdeck DOS Protected Mode
Interface for programs that support DPMI (e.g., Microsoft's C/C++ Development System for
Windows version 7, Borland's C/C++ version 3, and Intel's Code Builder Kit version 1.1).   
QEMM's DPMI host is called QDPMI. Unlike other DPMI hosts, QDPMI provides virtual memory
in the DOS environment.
To enable or disable QDPMI:

Select Do not use Quarterdeck's DPMI host to disable this feature.
Select Use Quarterdeck's DPMI host to enable this feature.

IMPORTANT:    Once you enable or disable QDPMI, you must reboot your PC for the change
to take effect.

QDPMI uses about 2K of RAM. If you do not have applications that support DPMI, you may
want to disable QDPMI to free up 2K of memory. Protected-mode programs that are VCPI
clients will run under QEMM even if QDPMI is not loaded.
If you enable QDPMI, QEMM Setup will place the QDPMI.SYS device line in your CONFIG.SYS
file. You can specify the size in kilobytes of the DPMI swapfile, an area on disk that will be
used as virtual memory for DPMI applications. The default swapfile size is 1024K (1 meg).   
The advantage of specifying a bigger swapfile is that more virtual memory will be available
to DPMI programs. It is particularly important to have a large swapfile if you have a low-
memory system and a memory-hungry DPMI application. The disadvantage of specifying a
bigger swapfile is that more of your hard disk may be used up by your DPMI program. QDPMI
does not use any of your hard disk for a swapfile until the DPMI program requests the
memory, and the swapfile grows as needed up to the maximum size that you set.

Enable or Disable Stealth D*Space

QEMM can use its Stealth technology to move DOS 6's DriveSpace or DoubleSpace driver
entirely out of conventional and upper memory, making it appear in the EMS page frame
when it is needed. This saves about 31K-49K that would otherwise use up space in
conventional memory or upper memory.
To enable or disable QEMM's Stealth D*Space feature:

Select Use QEMM's Stealth D*Space to enable Stealth D*Space.
Select Do not use QEMM's Stealth D*Space    to disable Stealth D*Space.

IMPORTANT:      Once you enable or disable Stealth D*Space, you must reboot your
computer for the change to take effect.

If you enable Stealth D*Space, QEMM Setup will place the ST-DSPC.SYS driver in your
CONFIG.SYS file to relocate the DoubleSpace or DriveSpace driver. ST-DSPC.SYS uses about
3K and can be loaded high. Optimize will add the necessary command to load this driver
high if there is room for it in upper memory.

Suspend/resume laptop support
This option enables or disables QEMM's special support for the suspend/resume feature
found on many portable computers. Suspend/Resume is a feature that allows you to run the
computer on low power when it is not in use, and to restore the system to its previous state
when you return to it. Many systems with the suspend/resume feature will work fine without
special support from QEMM, but some systems will not return properly from a low power
state if a 386 memory manager such as QEMM is active. If your system has a
suspend/resume feature that is not working properly with QEMM installed, you should enable
QEMM's support for suspend/resume.
To enable or disable QEMM's special support for the suspend/resume
feature:

Select Auto to enable QEMM's special support for suspend/resume.   
Select No to disable QEMM's special support for the suspend/resume feature.
Select Interrupt if you have tried the Auto selection without success. After selecting

Interrupt, click in the adjacent field and specify a hardware interrupt number for your PC's
suspend/resume feature.    2, D, 72, 73, and 77 are the numbers most likely to be used by
the Suspend/Resume feature. See your hardware documentation or contact the
manufacturer for information on the appropriate interrupt number.
If you choose Yes, QEMM Setup places the SUS parameter on the QEMM386.SYS line in the
CONFIG.SYS file. This parameter makes QEMM search for the hardware interrupt that
suspend/resume is using. If you select Interrupt, Setup adds the SUS:xx parameter, where xx
is the interrupt number you specify.

Exception Reports Explained

Quarterdeck Technical Note #142

Q. What are processor exceptions? What is an Exception #6, #12,    or #13?    And
what does the QEMM Exception message mean?

Users of QEMM may sometimes encounter a report that an attempt has    been made to
execute an invalid instruction. It is almost certain    that QEMM, in and of itself, is not the
cause of Exception    problems, though QEMM's memory managment may come into conflict 
with other hardware and software on your system.

In this technical note, we explain in detail what a processor    exception is, how you can
interpret the information provided by    the exception report, and what you can do to remedy
the situation    in the unhappy event that the techniques in TROUBLE.TEC don't    provide
relief from the problem.

To answer the questions above, it's worthwhile to examine the    Exception report bit by bit.

"The processor has notified QEMM that an attempt has been made to    execute an invalid
instruction..."

Exceptions are the processor's response to unusual, invalid, or    special conditions in the
normal operation of the 80386 processor    and others in its family. (The 80386 family
includes the 80386SX,    the 80386DX, the 80486SX, the 80486DX, and Pentium processors;
their memory    management architecture is essentially the same. In this    document, the
term "386" refers to any and all of these    processors.) Exceptions cause the 386 processor
to stop what it's    doing and to try to react to the condition that caused the    exception.
QEMM is designed to capture some of these exceptions    -- particularly those caused by
protection faults or invalid    instructions, which could cause a program or the entire system
to    crash -- and display a report to the user. When the processor    encounters an instruction
that it does not want to execute, it    passes control to QEMM. QEMM's protected mode INT 6,
INT 12, or    INT 13 handler posts the Exception message. Neither DOS nor    Microsoft's
EMM386.EXE have as sophisticated protected mode    handlers, so if an exception occurs
using only DOS or EMM386.EXE,    your system may simply crashes and leave you without a
report.

 Q. What causes an Exception?

"...This may be due to an error in one of your programs, a    conflict between tw o pieces of
software, or a conflict between    a piece of hardware and a piece of software...."

The exception reported is most commonly #13, the General    Protection Fault exception. This
indicates that a program has    tried to execute an invalid or privileged instruction. On the
386    processor, programs can run at varying privilege levels, so that    the processor can
better protect application programs (which    generally run at lower privilege levels) from
crashing the    operating system or control program (which typically runs at the    highest
privilege level). DOS and QEMM do not enforce this    protection, but QEMM can report when
a program running at the    lowest privilege level tries to execute a privileged instruction.   
The result may be a system crash, but QEMM does provide a report    before the crash
happens.

Invalid instructions are harder to classify, for indeed Exception    #13 is something of a catch-

all. Some examples of invalid    instructions include:

- 386-specific instructions that are disallowed when the processor    is in virtual 8086 mode.
The processor is in this mode whenever    QEMM is in an ON state -- essentially when it is
providing    expanded memory or High RAM.

- A program trying to write data to a segment that has been marked    as executable or read-
only (the data could overwrite program    code).

- Trying to run program code from a data segment (if data is read    as code, it will be a series
of meaningless or nonsensical    instructions -- which, if executed, could jump to invalid   
addresses or overwrite the operating system)

- Exceeding the limit of a segment. Segments in virtual 8086 mode    are not permitted to
exceed FFFFh (65535 decimal) bytes or to    fall below 0 bytes. Neither a program instruction
nor a memory    reference may span the boundary of a segment.

It is this last error which is the most common; this is a problem    also known as "segment
wrap", which we will discuss later. Again,    QEMM is designed to trap and report these errors,
but it cannot    defend against the system crashes that they may cause.

Occasionally Exception #12, indicating a stack exception, will be    reported. This is a
protection violation very similar to Exception    #13, but is one in which the stack segment is
involved in some    way. Although generally no easier to solve, it is a somewhat less    general
report than Exception #13.

Exception #6 may also be reported. This indicates that a program    has tried to execute an
invalid opcode. Machine instructions are    stored as sequences of bytes in memory. These
sequences are    fetched from memory and decoded by the processor into    machine-
language instructions. When the processor encounters a    sequence of bytes for which there
is no corresponding    machine-language instruction, the processor generates an Exception   
#6 and QEMM reports the Exception to you.

Very infrequently, an Exception #0 is reported. This is not    intentional; it is usually the result
of QEMM's stack being    corrupted while QEMM was trying to report another exception, or is   
the result of some other system error.

It is important to remember that in the vast majority of cases,    QEMM is not involved with
the problem, but is merely reporting it.    Most often, the problem is simply a bug in the
offending program.

Q. What do I do now?

"...It is likely that the system is unstable now and should be    rebooted...."

QEMM is designed to offer the user the opportunity to terminate    the offending program, or
to reboot the computer, but often the    damage has already been done by the time that the
Exception is    trapped and reported. In this instance, you may find the computer    locked
regardless of what you choose. If the computer is indeed    hung, you should write down the
information on the screen and then    reboot the machine.

While QEMM's Exception reports can be cryptic to non-programmers    -- or to programmers
who have little experience with assembly    language -- the information that they provide can
sometimes be    quite helpful. Exception reports can help you to identify which    program has
triggered the exception message, what the invalid    instruction was, and the state of the

processor's registers when    the error occurred. Armed with this information, you may be
able    to help the developer of the offending application to determine    the problem that led
to the exception, and thus the developer may    be able to provide a temporary workaround
or a permananent fix.

The exception report is divided into three parts --

1) The vector or class of exception, and its location and error    code. The location of the
exception indicates the address in    memory at which the invalid instruction was attempted.
The    program loaded at this address (if indeed a program is loaded    there) should be noted
by running Manifest.

Exception #13 at 1B12:0103, error code: 0000

In this example, the program loaded at address 1B12:xxxx is    automatically your suspect.
Reboot your system in the same    configuration as you had when the Exception #13
occurred. If the    problem happened during an application program, don't load the   
application just yet. Load Manifest instead, and have a look at    First Meg / Programs.

The sample Exception #13 above happened in that Available range,    so it was the program
that would have been loaded had we not    loaded Manifest -- that is, the application
program. If you have    a TSR loaded low, and the Exception #13 is occuring within that   
TSR's address space, then it is your suspect, rather than the    application. In any case, the
program whose code falls into the    range in which the Exception #13 occurred likely has a
problem of    some type.

2) The second part of the Exception #13 message is the register    dump:

AX=0000 BX=0000 CX=0000 DX=0000 SI=FFFF DI=0000 BP=0000    DS=1B12 ES=1B12
SS=1B12 SP=FFFE Flags=7246

The registers are the temporary storage areas on the 80386 chip    which are used for
calculations and addressing. Each register is    two bytes (16 bits) in size, so each register is
capable of    holding a value from 0 to FFFF (hexadecimal), or from 0 to 65335    (decimal).

If any registers here are 0000 or FFFF, it's possible that you    could be looking at a segment
wrap. A segment wrap happens    whenever a program attempts to access -- read from or
write to --    something beyond the limit of a segment. A word value consists of    two adjacent
bytes; if a word value were to begin at FFFF (which    is the last byte of a segment), the
second byte of that value will    be outside the segment -- and an attempt to read from or
write to    that word will thus cause a protection violation. Similarly, a    doubleword is four
adjacent bytes; if any of the last three bytes    are outside of the segment limit, a segment
wrap and a protection    violation will occur when an access is attempted.

On an 8086 processor, it's actually possible for a segment wrap to    occur without a
protection violation, simply because the 8086 has    no hardware protection at all. What is
the byte after the last    byte of a segment? On the 8086, it's the FIRST byte of the same   
segment. (Non-technical analogy for poker players: Queen - King -    Ace - Two - Three is a
straight in the penny-ante poker game    played when the 8086 processor is dealing. The 386
processor is a    very strict dealer, and does not permit this.) It is possible    (though unlikely)
for a program to continue without a crash on an    8086 processor when two "adjacent" bytes
are actually a whole    segment apart; it could theoretically be possible on a 386 too,    but
the exception is generated before the memory access can be    completed.

This sort of problem is seen most commonly during a string move --    the program is copying
a whole block of data from one range of    addresses to another. You may not understand
this, and actually    it doesn't matter if you don't. Briefly, though, SI stands for    Source Index;
DI stands for Destination Index. These two registers    are used for string instructions --
instructions that load or copy    information sequentially. String instructions are extremely   
powerful and useful, since they allow the developer to deal with    large amounts of data in a
single pass. A byte or a word value    can be fetched from memory by one string instruction,
dealt with,    and then the result can be copied to a new memory location with a    second
string instruction -- and all this can be managed with an    extremely tight, fast loop. An
entire range of addresses (for    example, in screen memory) can even be filled with a given
value    using a single instruction. The catch here is that the string    instruction is only valid
as long as the value of the SI or DI    register does not fall outside the range addressable by
these    registers. If either one of these tries to exceed FFFF (or tries    to fall below 0000), as
a string is being copied from one region    of memory to another, you'll get a protection
violation.

3) Instruction: A5 CC 00 00 00 00 00 00 00 00 00 00 00 00 00    Do you want to (T)erminate
the program or (R)eboot?

This is the invalid instruction that the program was trying to    execute when the processor
stopped it. Since most humans don't    have a hope of interpreting machine language by
looking at the    opcodes, you can get a better interpretation of what is going on    by
examining this instruction with a program that can render    machine codes into assembly
language. (Well... it's better than    nothing.) To do so, go into DEBUG; type DEBUG at the
DOS prompt.

Enter the values from the Instruction line by typing

E 100

at DEBUG's hyphen prompt, and then entering each byte (pair of digits) from    the
instruction line. Follow each byte with a space.

(As a bonus -- if you're running under DESQview, you can Mark the    information from the
Exception #13 report, and Transfer it into    DEBUG running in a different Big DOS window.)

If most of the bytes begin with a 4, 5, 6, or 7, there's a good    chance that you're seeing a
program trying to execute text,    thinking that text to be code. This can happen in several   
circumstances, but frequent offenders are those programs which    load code at the top of
conventional memory during boot -- and    therefore during the OPTIMIZE process -- and
presume that no    program will allocate that memory. Programs which place parts of   
themselves at the top of conventional memory typically do so    without protecting
themselves from programs like LOADHI which may    need to allocate all conventional
memory at appropriate times;    LOADHI (and programs like it) will overwrite the vulnerable
code.

As a real-world example, PROTMAN, a program whose purpose in life    is to manage the
loading of various parts of 3Com and MS-LAN    networks, did this in past versions, as
explained in Quarterdeck    Technical Note #173, PROTMAN.TEC. During the OPTIMIZE
process,    LOADHI would allocate all conventional memory while it was    determining the size
of the various drivers that were being    loaded. PROTMAN would jump to what it thought was
still its own    code, but there would be LOADHI signatures there -- text -- and    PROTMAN
would crash.

You can see the contents of this string if you Dump the    instruction you just entered; use
DEBUG's D instruction to do    this.

-d 100

At the leftmost edge of your screen, you'll see a list of    addresses. At the center and right of
your screen, you'll see    this:

ASCII codes starting with 2 are generally punctuation marks; bytes    30-39 represent
numeric digits; 3A-3F are punctuation, 41-5A are    capital letters, 61-7A are small letters.
Any instruction made up    mostly of these numbers is almost certainly text -- and therefore   
not executable program code. The program that is trying to run    such an instruction is doing
so in error. When the instructions    are NOT mostly in the 40-80 range, you should try to
Unassemble    them.

-u 100

20C0:0100 A5 MOVSW   
20C0:0101 CC INT 3   
20C0:0102 0000 ADD [BX+SI],AL

This is the killer instruction from the example Exception #13    above. It's performing a
MOVSW (MOVe String Word) at a point when    the SI register is FFFF, and that means that it's
trying to write    a word value to or from the last byte of a segment, which (as    described
above) is illegal.

Other invalid instructions are harder for the non-programmers of    the world to interpret.
Often the first byte of an invalid    instruction is 0F -- which is a valid protected-mode
instruction,    but which the processor interprets as an invalid opcode if the    machine is in
Virtual 86 mode. Exceptions of this kind showed up    more commonly in the past, with
programs that were trying to enter    protected mode without calling the Virtual Control
Program    Interface. VCPI is an industry-standard way for protected-mode    software to
coexist with 386 expanded memory managers such as    QEMM; all 386 memory managers
these days are VCPI-providers, and    almost all protected-mode programs are VCPI users (or
"clients").    Non-VCPI protected-mode programs include some memory- and    hardware-
diagnostic programs, and programs that use the DPMI    memory management specification
exclusively. Diagnostic programs    typically recommend that you disable all memory-
management    software during diagnosis. DPMI programs will typically accept    VCPI memory
management; those rare programs that do not will    simply refuse to start up under QEMM.
In such cases, you may    install QDPMI (the Quarterdeck DPMI Host) on your system; QDPMI
is    available on the Quarterdeck BBS at (310) 309-3227, Compuserve    (!GO

QUARTERDECK), or large local BBS systems.

Q. How can an Exception #13 be fixed?

Quarterdeck Technical Note #241, QEMM: General Troubleshooting    (TROUBLE.TEC) is a
good place to start. This note describes common    problems and possible solutions, and will
help if the cause of the    Exception #13 is a memory conflict or bus-mastering issue.

If you follow the instructions in TROUBLE.TEC completely, and the    Exception #13 persists,
the prospects for a resolution are bleak,    since the problem is almost certainly a bug in the
offending    program. If this is so, unless you can alert the developer of the    program (and
make him or her understand all this, which might be    another task altogether), you can
never really make the problem go    away, although sometimes you may be able to make it
subside.

Changing the location of the offending program in memory will    sometimes help. If you're
running under DESQview, and you're sure    that you've given the program enough memory
(i.e., all you can    give it), try adding 16 to the size of the script buffer on page 2    of Change
a Program. If you're not running under DESQview, try    adding an extra file handle or two.
The key here is to change the    location of the program in memory, which can occasionally
be    enough to provide temporary relief from the Exception.

There is a substantial caveat: You're not fixing the problem by    doing this; you're just
making it submerge. There's still    probably a bug in the offending program -- you've just
changed it    from a bomb to a landmine. If you can reproduce the problem    consistently, you
should still contact the publisher of the    application with all of the data from the Exception
message, and    all of the data that you can supply about your system and its    current
configuration.

With the exception (no pun intended) of the techniques mentioned    above and in
TROUBLE.TEC, non-programmers can do little to fix the    root cause or even the symptoms of
Exception reports. If you are    unsuccessful in resolving a conflict, the information provided
by    the report should be forwarded, along with a Manifest printout and    a complete
description of your system, to the developer of the    program that you were running at the
time.

Return to Technotes Main Menu.

Exception Reports:    Advanced Troubleshooting

Quarterdeck Technical Note #232

OVERVIEW

This document addresses Exception #6, #12 and #13 error messages. These three Exceptions are so
similar in cause, nature, and solution that they are all covered by the information below. Any reference to
an Exception error in this document applies to an Exception #6, Exception #12, or Exception #13 error.

Please note that sometimes QEMM cannot report the error to the screen, so a blank screen or a lockup
occurs. For troubleshooting purposes, treat a system lockup or a blank screen (one that accepts no input)
as an Exception error.

This troubleshooting procedure will isolate and resolve the conflict most effectively if you are able to
reproduce the conflict at will (i.e., you know of a specific action or seriesof actions that will cause the
conflict to occur). The reason for this is that this procedure follows a logical set of tests to determine
when a conflict is occurring and when it is not. A conflict that randomly occurs is difficult to troubleshoot
because you do not know for sure when the configuration being used is actually resolving the conflict.

Q: What is an Exception error?

A: Exceptions are generated by the protection mechanisms on your PC's processor (and not by QEMM),
in response to an invalid or unusual condition. QEMM has the ability to detect exceptions
and display relevant information to the screen. The report informs you what has happened so that you
may take the necessary steps to resolve the conflict. Without QEMM's warning, your system may simply
have crashed or hung without a message, or may have become unstable. For more detailed information
about Exceptions themselves, please refer to Technical Note #142, "QEMM: Exception 13 Explained"
(EXCEPT13.TEC).

Q: How do I resolve my Exception error?

A: Follow these steps:

1) Run through TROUBLE.TEC. This technical note treats almost all potential causes of Exception
reports with which QEMM might be involved, and does so in a very efficient way. Follow the steps in
TROUBLE.TEC to determine which aspect of your system's configuration is the cause of the problem.
TROUBLE.TEC is a general troubleshooting guide, and may refer you to still other technical notes to
resolve specific conflicts.

2) If TROUBLE.TEC proves that QEMM is not involved, and Exceptions or crashes still persist with DOS'
memory managers, contact the publisher of the application that is running when the problem occurs.
Inform the publisher's technical support department that you have reproduced this problem using both
QEMM and DOS's memory managers. This indicates a problem in which the specific memory manager
is not involved. Contacting the manufacturer of the program is often the quickest way to resolve the
conflict.

3) If TROUBLE.TEC shows that QEMM is involved with the problem but does not point you towards a
solution, Quarterdeck's technical support department is easily reached via electronic channels such as
CompuServe (GO QUARTERDECK), Internet (mail support@qdeck.com or the USEnet newsgroup
comp.os.msdos.desqview), the Quarterdeck BBS (310-309-3227), or fax (310-309-3217). When
contacting Quarterdeck, be sure to explain the symptoms of the conflict and the results of the
tests performed while following TROUBLE.TEC. You can also call our Technical Support line at 310-309-
4250 for further assistance. When you call, please be at the machine that is experiencing the conflict.

Return to Technotes Main Menu.

The driver FIXINT13.SYS (described in Chapter 12 of the Reference manual under the
erroneous name INTFIX13.SYS) is a replacement for the driver ULTRAFIX.SYS, which was
formerly distributed on the Quarterdeck bulletin board and other electronic forums. If you
use ULTRAFIX.SYS, replace it with FIXINT13.SYS.

Find ROM holes
This option enables or disables QEMM's feature that finds "ROM    holes" --unused areas in
the system ROM (between F000 and FFFF)--and makes them available for High RAM or
expanded memory mapping. This feature is only available when QEMM's StealthROM
feature is not in use.
To enable or disable QEMM's ability to find and use ROM holes:

Select Yes to enable QEMM's ability to find ROM holes and make them available for
High RAM or expanded memory mapping.

Select No to disable this feature.
The feature that finds ROM holes is on by default. If you choose No, QEMM Setup adds the
RH:N parameter to the QEMM386.SYS line in CONFIG.SYS.
The most common reason to disable this feature is to troubleshoot floppy disk problems or
other conflicts between QEMM and your system. If disabling this feature solves your
problem, it may be more memory-efficient to use the EXCLUDE parameter on a section of
the system ROM instead of using the RH:N parameter.

Fill Upper Memory with RAM
This option creates or removes High RAM in the upper memory area. When High RAM is
present, you can load TSRs, device drivers and parts of DOS into upper memory. By loading
these items into upper memory, you will have more conventional memory available for DOS
programs.
To create or remove High RAM:

Select Yes to create High RAM.
Select No to remove High RAM.

Yes causes QEMM Setup to place the RAM parameter on the QEMM386.SYS line in
CONFIG.SYS; No causes QEMM Setup to remove the RAM parameter. By default, QEMM's   
installation creates High RAM.

Freeing Additional Conventional Memory
If you use DOS text-based programs, you can extend conventional memory by as much as
96K by using QEMM's VIDRAM feature. For information on VIDRAM, see Chapter 6 of the
QEMM Reference Manual.
The Manifest program may be able to tell you how to free up a bit more conventional
memory. Run Manifest by typing MFT at the DOS prompt. When Manifest displays, type H to
select Hints, and read the suggestions Manifest offers.

If you do not use any programs that require DPMI (DOS Protected Mode Interface) memory,
you can free up 1-2K by deleting the QDPMI.SYS device driver line from your CONFIG.SYS
file.

Return to Hints Main Menu.

Falcon (Spectrum Holobyte)
Flight Simulator (Microsoft)
Patriot (Three-Sixty)
Spear of Destiny (ID Software)
Strike Commander (Origin)
Ultima Underworld (Origin)
V for Victory (Three-Sixty)
Wing Commander (Origin)
Wolfenstein (ID Software)
X-Wing (LucasArts)

Help About QEMM Setup's Online Help

General information: For information on using the Windows online help system, press F1
at any time.

Secondary windows:    The small graphic image of a printer and clipboard to the left of this
paragraph appears in the upper left corner of most secondary windows.    When a topic in a
secondary window is accompanied by this graphic image, you can print the topic by clicking
on the printer or copy the topic to the Windows clipboard by clicking on the clipboard.   

Hints

Information is available on the following topics:
QEMM and Microsoft Windows

QEMM and DESQview or DESQview/X

QEMM and DR-DOS or Novell DOS

QEMM and Disk Compression Software

QEMM and Bus-mastering Devices

QEMM and the EMS Page Frame

QEMM's StealthROM Feature

QEMM's Optimize Program

Undoing an Optimize

QEMM's Manifest Program

VIDRAM:    Extending Memory for Text-based Programs

Freeing Additional Conventional Memory

QEMM's New Parameter Names

Booting Your System Without QEMM

Contacting Quarterdeck's Technical Support Department

Switching Between MS-DOS 6's Memory Manager and QEMM

 Return to Hints, Technotes, and README Menu

Some customers report less conventional memory available with QEMM 8 than with previous
versions.    In many cases, this is because QEMM attempts automatically to EXCLUDE a byte
in the F000 region, in order to support better Microsoft Windows' MaxBPS= SYSTEM.INI
setting.    If you have set MaxBPS set to a value greater than 200, QEMM's default behaviour
will likely be preferable to you.    If you have MaxBPS set to a value of 200 or less, you might
wish to try adding the SRBP:N parameter to the end of the    QEMM 386.SYS line in
CONFIG.SYS.

QEMM's superior detection of Plug and Play BIOS and other forms of adapter RAM and
ROM may cause QEMM to EXCLUDE automatically more address space than previous
versions.    This is safer than including these regions by default, but can result in less
High RAM or less conventional memory than before, or can result in the EMS page frame
being placed in conventional memory.    The QEMM Analysis procedure, detailed in the
manual, may allow you to reclaim this High RAM.    You may also wish to check
Manifest's Hints screen to confirm that Analysis will be helpful.

Finally, QEMM may have increased extended memory overhead in this version on some
systems, which may result in a net loss in available extended or expanded memory.   
There is no remedy for this situation.

If you have a command in AUTOEXEC.BAT in the form GOTO <LABEL>, where there is no
corresponding <LABEL> in the AUTOEXEC.BAT file, the OPTIMIZE process may simply
terminate.    Ensure that all GOTO statements in AUTOEXEC.BAT refer to valid labels.

MagnaRAM:    General Information and Troubleshooting

Quarterdeck Technical Note #315

This technical note provides general information and troubleshooting tips for MagnaRAM 2.0. 
For information on MagnaRAM 1.0, refer to the Quarterdeck Technical Note #300,
"MAGNARAM.TEC 1.0 General Information".

General MagnaRAM 2.0 Information

Quarterdeck's MagnaRAM is an easily configurable utility designed to increase your available
memory, performance and multitasking capabilities within Windows 3.1x, Windows for
WorkGroups, and Windows 95.    MagnaRAM provides you with more available memory and
performance by using powerful memory multiplying technology. MagnaRAM's memory
multiplying techniques provide:

      Significant amounts of additional Windows memory for your programs by compressing
data, both in RAM memory and on your hard disk.

      Performance benefits to your system by minimizing the use of slower virtual memory.   
The more you use your high-speed system RAM, the less you must access the much
slower virtual memory.

System Requirements:

      PC with a 386 or higher processor.
      4 MB of RAM.    (Performance improvement with additional installed RAM.)
      Windows or Windows for WorkGroups 3.1x or Windows 95 running in 386 Enhanced mode
      MS or IBM-DOS 3.1 or later, or Novell DOS.
      Windows Virtual Memory feature enabled.
      Permanent swap file recommended.
         
         
General Troubleshooting Issues

Q. Is MagnaRAM compatible with disk compression programs?

A. MagnaRAM is compatible with disk compression programs such as Stac Electronics'
Stacker and Microsoft's DoubleSpace and DriveSpace. MagnaRAM does not interact
directly with your hard disk, or with disk compression programs -- it lets Windows swap all
data to the disk.

Q. Where is the Uninstall icon that is documented in the manual?

A. Some revisions of the MagnaRAM User Guide make anerroneous reference to an uninstall
icon in the MagnaRAM folder for Windows 95.    On Windows 95 systems, use the
Add/Remove Programs feature located in the Control Panel.On Windows 3.1x / Windows
for WorkGroups systems, use the MagnaRAM uninstall icon located in the MagnaRAM
group.

Q. I have deleted MagnaRAM, but I can't reinstall it.    My machine says that

MagnaRAM is already installed.    What can I do?

A. On Windows 95 systems, remove any lines referring to MagnaRAM in your System
Registry.    For example:

1.    Click on "Start" and choose the "Run" option.
2. Type in REGEDIT <enter> to load the Registry Editor program.
3.    Click on the Search menu, then click on the Find option.
4.    Type MAGNA <enter>.    If you find anything that refers to MagnaRAM, press to

remove that section.
5.    Click on Find Next and continue searching until no more are references found.

On Windows 3.1x / Windows for WorkGroups systems, remove any lines referring to
MagnaRAM located in the SYSTEM.INI and WIN.INI files.    For example:

1.    Click on File/Run from the menu of Program Manager.
2.    Type in SYSEDIT <enter> to bring up the System Editor program.
3.    Click on Window and select SYSTEM.INI.
4.    Locate the line in the [386Enh] section that ends with MAGNARAM.VXD and remove it.
5.    Click on Window and select WIN.INI.
6.    Locate the line in the [windows] section that ends with LOGO31.EXE and remove it.
         
Q. I loaded MagnaRAM and now Windows 3.1x / Windows for WorkGroups stops

responding when I am using it.

A. Below is a list of some things to check about your Windows configuration:

      Make sure that you are using a PERMANENT Windows swap file.    This can be verified by
clicking on the 386Enh icon in Control Panel, which is by default in the Main program
group.   

      Make sure that you are using the swap file on an UNCOMPRESSED drive.    If you are
using disk compression software such as Stacker or DriveSpace, use the configuration
utilities included with those applications to increase the size of your uncompressed drive. 
Then you can create a permanent swap file on that drive, and still have room for any
other programs that are needed on the compressed drive.   

      Please contact the manufacturer of the compression software you are using or consult
the manuals if you are unsure of how to change the size of your uncompressed drive.

      While you are checking the swap file settings in the 386Enh section of Control Panel,
verify that 32-bit file access is not enabled OR lower the cache size to 1024K or less.

      Using MagnaRAM's setup utility, lower the size of the compression buffer that
MagnaRAM uses, and increase the threshold setting to 30-40%.

      Edit the SYSTEM.INI file located in the Windows directory and change the order of the
drivers in the DRIVERS= line. Try moving MAGNARAM.DLL to the beginning of that line.   
If that does not resolve the conflict, try placing MAGNARAM.DLL at the end of the
DRIVERS= line.

Q.    I installed MagnaRAM on my system and Windows appears to be running more
slowly.

A.     MagnaRAM automatically configures itself to your system, but sometimes it will require
fine tuning in order to work at its peak performance.

        For Windows 3.1x or Windows for WorkGroups users, try going into MagnaRAM's settings
section (the screwdriver icon) and change the PageOverCommit setting from 8 to 3. This
affects the amount of linear (Windows) memory that is available to your system.   
Reducing this number will lower the total amount of linear memory you have available;
however, system performance may increase.

        Also, for both Windows 95 and Windows 3.1x / Windows For Workgroups users, try
decreasing the MagnaRAM Compression Buffer size at an increment of 20-30 percent   
until you get an improvement in performance.

Q.    MagnaRAM does not appear to be doing much. Is it loading?

A. Check the following to see if MagnaRAM is loading:

        On Windows 95 systems, use the Registry Editor (REGEDIT) to search for any lines
containing "MAGNA". For Windows 3.1x / Windows for WorkGroups, edit the SYSTEM.INI
and search for the DRIVERS= line that refers to MagnaRAM.    If this entry is not present,
MagnaRAM is not properly installed.

        If there are Registry entries containing "MAGNA", check the MagnaRAM statistics window
and make sure that Compression Buffer Size is set to 10% of the machine's physical RAM.
MagnaRAM's compression techniques may not take effect immediately, and may not be
readily noticed at Windows startup.

         
Q.    MagnaRAM is loaded and working fine, but I no longer get any sounds in
Windows 3.1x / Windows for WorkGroups.

A.    After checking that your sound card is setup correctly, edit the SYSTEM.INI file located
in the Windows directory. Check the DRIVERS= line that references MagnaRAM.    It is
possible that when MAGNARAM.DLL was added to that line during installation, the driver
for the sound card was "bumped off" of the line, especially if the DRIVERS= line is
unusually long. Reinstalling the driver(s) for the sound card may solve this problem. You
should consult you sound card manual for the necessary files needed on this line.

         
Q.    Why does MagnaRAM fail to load, and why can't I restart it?

A.      You may find that MagnaRAM is is failing to reload some of its files properly. Uninstall
MagnaRAM with its built-in UnInstall utility, and make sure that the lines    added to the
SYSTEM.INI shown on page 30 of the manual are removed.    If not, manually remove
them.    Then re-install the program.

         
Q.    I am trying to install MagnaRAM, but it will not accept my serial number nor

proceed to the next screen when I click on the NEXT button.

A.    If the NEXT button won't highlight to allow you to go to the next screen, please verify
that the Company Name field is filled out.

         
Q.    MagnaRAM doesn't give me enough memory to run an application.

A.      Sometimes a program requires a certain amount of physical memory to run.    For
example, some computer assisted drawing (CAD) programs require 12 megabytes of

physical memory in addition to any virtual memory they use.    The system may simply
need more physical RAM for such programs.    If MagnaRAM does not provide you with
enough LINEAR memory to run a program, try increasing the size of the permanent
Windows swap file. You also try to decrease the Compression Buffer Size at an increment
of 20-30 percent.

Return to Technotes Main Menu.

Maximizing Conventional Memory

Quarterdeck Technical Note #296

DOS and the programs that run under it are limited, except in    special circumstances, to the
first megabyte of the processor's    address space. This has consequences for DOS programs,
and for    operating environments such as Quarterdeck's DESQview and    DESQview/X, and
Microsoft Windows.

Documentation for Quarterdeck products contains extensive    information on memory
management, and should be consulted for more    detailed study. This technical note
provides a list of the most    important quick tips for assuring that you have the maximum
amount    of conventional memory available, whether you are working from    DOS,
DESQview, DESQview/X, or Microsoft Windows. Note that many    of the QEMM features
suggested below will be enabled for you    automatically at the time you install QEMM.

1. Use QSETUP

The QSETUP program that comes with QEMM runs under DOS and    Windows. Its job is to
provide you with an easy-to-use way of    configuring QEMM's features, which are described
below. QSETUP    will allow you to configure QEMM, to active the DOS-Up feature      (including
DOS=HIGH), and to enable Stealth D*Space. At the end      of the QSETUP process, you will be
given an opportunity to    run OPTIMIZE.

2. Use OPTIMIZE

The OPTIMIZE process uses QEMM's RAM parameter and the LOADHI    utilities to move as
many programs as possible out of the    conventional memory area and above 640K. If
necessary, OPTIMIZE    will offer the option to activate QEMM's Stealth parameter    (detailed
below). You should run OPTIMIZE

- after running QSETUP    - after changing CONFIG.SYS or AUTOEXEC.BAT    - after adding or
removing hardware from your system

Regardless of the change that you have made, running OPTIMIZE will    ensure that you get
the maximum conventional memory.

3. Use Manifest.

The Manifest program that comes with QEMM provides you with a    detailed view of the
configuration of your PC. When run under    DESQview, DESQview/X, or Microsoft Windows,
Manifest can tell you    about the state of the current window. Manifest also includes   
detailed hints on how to get more conventional memory on your PC;    check the Hints
Overview AND the Hints Detail screen.

4. Use StealthROM

Go into Manifest, and inspect the QEMM Overview screen. If the    screen does not display
"Stealth Type" and "StealthROMs" and if    you have less conventional memory than you
would like, run the    QSETUP. OPTIMIZE program again. When OPTIMIZE offers to test for   
Stealth compatibility, answer Yes, and if OPTIMIZE finds that    Stealth is compatible with your
system, OPTIMIZE will activate    StealthROM. StealthROM is quite robust and compatbile,
and    typically results in 83K of extra High RAM into which DOS programs    can be loaded. If
you are having compatibility problems with    Stealth, consult your QEMM manual or "QEMM

GENERAL    TROUBLESHOOTING" (STEALTH.TEC). The time you take in    troubleshooting a
Stealth conflict is well worth the memory gain.

5. Use DOS-Up

QEMM's DOS-Up feature moves parts of DOS, including FILES,    BUFFERS, LASTDRIVE, the
DOS Data Segment (which is a block of    memory that DOS uses to keep track of its own
operation), and the    command processor (typically COMMAND.COM) high. The DOS kernel   
itself may also be loaded high (see the next section). Using    DOS-Up can result in a saving
of 7K-70K of conventional memory.    To activate DOS-Up, go into QSETUP, choose DOS-Up
Options, and    enable Partial (if you are you a DESQviewor DESQview/X user) or    All (if you
do not use DESQview or DESQview/X). Save your    configuration, and run OPTIMIZE.

6. Use DOS=HIGH

One of the features that you may activate from QSETUP is the    DOS=HIGH feature. This
loads the DOS kernel -- about 43K of code    -- into the first 64K above the 1024K line, thanks
to technology    originally discovered by Quarterdeck in 1986. If you are a    DESQview or
DESQview/X user, it is typically worthwhile NOT to use    this feature. DESQview and
DESQview/X use this memory (called the    High Memory Area, or HMA) more effectively than
DOS does.    Generally, you will receive maximum memory gains if you use    DOS=HIGH,
unless you are using DESQview or DESQview/X. To activate    DOS=HIGH, go into QSETUP,
choose DOS-Up Options, and enable All    (or choose Partial and ensure that DOS=HIGH is
activated. Save    your configuration, and run OPTIMIZE.

7. Use ST-DSPC

QEMM 7.0 and later come with a feature for DOS's disk compression    software
(DoubleSpace, and in DOS 6.22, DriveSpace) for which    Quarterdeck has special support.
The code for the disk    compression software can be placed into expanded memory,
replacing    a driver tht is typically over 40K with one that is typically    under 4K. This
generally represent substantial memory savings;    although DoubleSpace can be loaded
high, it still takes memory in    the first megabyte of adddress space. Stealth D*Space
removes most    of this overhead. If you are using DOS's disk compression,    activate QEMM's
Stealth D*Space feature. To do this, go into    QSETUP, choose ST*DPACE Options, and choose
L for Enable or    disable Stealth D*Space. On the next screen, choose Y to enable    Stealth
D*Space. Save your configuration, and run OPTIMIZE.

8. Use QEMM's Stacker Feature

QEMM 7.5 and 8 come with a feature that can allow Stacker 4 to put most    of its code
outside of conventional memory. Stacker's overhead in    conventional memory or in High
RAM to as little as 10K on MS-DOS 6    systems. This can save a great deal of memory indeed
on Stac'd    systems whose hard drives have large cluster sizes.

A program is available to enable users of Stacker 4 to enable this    feature is available to all
registered users of Stacker 4, either    from Stac Electronics or from Quarterdeck, under the
filename    S4UP.EXE.

To get your copy of this file, join the CompuServe forum for    either Quarterdeck or Stac, by
typing GO QUARTERDECK or GO STAC at    any CompuServe main prompt. Alternatively,
using your modem, call

Stac Electronics BBS (619) 431-5956    Quarterdeck BBS (310) 309-3227

Oce you have acquired this file and run the update, you may    activate the Stacker feature in
this way:

1. If you are currently inside Windows, exit it.   
2. At the DOS prompt, change to the Stacker directory.   
3. Type ED /I   
4. Press Enter to insert a new line.   
5. On this new line, type /QD   
6. Press Ctrl-Z to exit the editor, and save your changes.   
7. Restart your system to put the changes into effect.

As usual, since this represents a change to your CONFIG.SYS, use    the OPTIMIZE program
again.

9. Use EMS or XMS

Many programs -- TSRs, device drivers, and applications -- are    able to use expanded
memory (EMS) or extended memory (XMS)    reduce their DOS overhead. These features are
sometimes    automatic, but are sometimes enabled via parameters (or    command-line
switches) or initialization files. Additionally,    parameters may exist that simply reduce the
program's size --    sometimes by disabling unneeded features -- without using expanded    or
extended memory. This may require a little research on your    part -- such parameters are
found in the online help or in the    documentation for the program. However, this research
can reap    rich rewards in memory savings. Some programs that run only in    conventional
memory do not have switches to activate EMS or XMS    usage, but instead come with EMS-
using equivalents. Novell's NETX    network shell is an example of this; while it uses 43K of   
conventional memory, and does not use EMS, it is typically    accompanied by EMSNETX
(which requires less than 10K of    coventional memory) and XMSNETX (which takes similar
overhead).    These programs are functionally equivalent to NETX, but save    considerable
amounts of memory.

Also consult the Quarterdeck Technical Note "Why the EMS Page    Frame is Important"
(FRAME.TEC)

10. Use VIDRAM

VIDRAM provides up to 96K of extra conventional memory if you are    using text programs.
VIDRAM does this by borrowing address space    from the VGA graphics buffer on your video
card. VIDRAM can be    enabled or disabled on the fly, and can also run in text windows   
within Microsoft Windows. DESQview/X users in particular can take    advantage of VIDRAM.
(See Section 14 below.)

In order    to activate VIDRAM, simply type:

VIDRAM ON

On some video cards, it may be necessary to add the parameter    VIDRAMEMS (VREMS) to
the QEMM386.SYS line in CONFIG.SYS for VIDRAM    to work properly from the DOS prompt.
This parameter is    incompatible with Microsoft Windows. However, even on such cards,   
VIDRAM will work in a Microsoft Windows window without the VREMS    parameter.

11. Streamline your CONFIG.SYS and AUTOEXEC.BAT

If you are loading many device drivers or TSRs, they will have a    direct impact on
conventional memory.

Programs such as disk caches, RAM drives, or video speedup    utilities typically consume
memory in the first megabyte. If you    do not need these drivers, or are unsure of their
usefulness, you    may consider removing them to see the impact on performance. You    may
find that the benefit of additional memory outweighs the gains    provided by such utilities.
Arriving at optimal performance will    require you to decide which features are more
important than    others.

If you are using DESQview, DESQview/X, or Microsoft Windows, TSRs    or device drivers such
as ANSI.SYS, DOSKEY or Sidekick should be    removed from the AUTOEXEC.BAT and loaded
in a window instead.    Such programs only have a memory impact on the window in which   
they are loaded, but if loaded before your operating environment    will reduce the size of all
of the windows on your system.     

12. Consider removing QDPMI

Many modern DOS-Extended programs use the DOS Protected Mode    Interface (DPMI) in
order to get access to extended memory.    However, the DPMI specification suggests that, in
the absence of a    DPMI host, other strategies such as VCPI or XMS can and should be    used
to get access to extended memory. This means that the    Quarterdeck DPMI Host
(QDPMI.SYS) may not be necessary on your    system. If so, use QSETUP to disable QDPMI,
save your    configuration, and run OPTIMIZE.

13. Use QEMM's Analysis Procedure to Gain High RAM

If you're not using QEMM's StealthROM feature, you may still be    able to us e small amounts
of address space that are marked as    reserved by the System ROM, but which are acutally
unused. The    Analysis procedure is documented in the QEMM manual. You should    not need
to perform an Analysis if you are using StealthROM, which    typically gains much more High
RAM.

14. On DESQview/X Systems with 8514/A Graphics Adapters, Use VIDRAM

If you have an 8514 hardware-compatible video card and DESQview/X,    you can use VIDRAM
without disabling graphics! This is because    8514/A graphics adapters do not use the
address space that VGA    adapters do, and because DESQview/X specifically supports the
8514    adapter. This can create DESQview/X windows that can provide    64K-96K of
conventional memory. Note that if your 8514 card    requires a driver then it is not likely to be
hardware compatible    and that this hint may not be successful.

First, add the VREMS to the QEMM386.SYS line in the CONFIG.SYS    file.

DEVICE=C:\QEMM\QEMM386.SYS RAM VREMS

Then, type the following line before you enter DESQview/X. You    may choose to add this line
to your AUTOEXEC.BAT file, or to any    batch file that starts DESQview/X:

C:\QEMM\VIDRAM ON

This line will activate VIDRAM and extend conventional memory.    When you start
DESQview/X, it may report "GRFVGA.DVR does not find    the correct video adapter". You may
safely ignore this message;    DESQview/X will function properly.

15. Reduce the overhead of your operating environment.

DESQview and DESQview/X's Setup programs contain some settings    that may allow you to
squeeze an extra few K of memory out of a    heavily loaded system, at the potential cost of
some speed or    performance.

"Common Memory" is memory used by DESQview and DESQview/X to    manage its windows,
and the amount you need is usually    proportionate to the number of windows you open, and
the amount of    text you intend to transfer with DESQview's Mark and Transfer    feature. The
default (and minimum) value under current versions    of DESQview is 20K, and should permit
the transfer of several    screen's worth of data and several windows open simultaneously; if   
your common memory setting is higher than this, you may wish to    reduce it. Under
DESQview/X, the default value is 32K; this may    be reduced by a few K to eke out an
equivalent amount of window    memory.

"DOS Buffers for EMS" (under DESQview) or "DOS I/O Buffer" is    memory used by DESQview
to manage file operations into expanded    memory. The default value is 2K under DESQview,
and 8K under    DESQview/X. Users of QEMM who are not on a network can set this    figure to
0K with no loss of performance. The value of this field    can affect the speed of disk access;
however, it is rarely    worthwhile to choose a value higher than 10K or 15K.

If you wish to throw away a few DESQview features, you can    probably scrimp a few more K
from the Setup program.

On the Keyboard option, you can save as much as 12K if you tell    DESQview that you don't
wish to use the Learn feature. This will    disable DESQview's very useful macro system.

On the Video Monitor option, you can save anywhere from 0K to 16K    if you tell DESQview
that you don't wish to display text and    graphics at the same time. This will disable
DESQview's Video    Options menu, prevent graphics programs from being seen when they   
are in background, and prevent virtualization of graphics. You can    save another 2-9K by
choosing 0 for "What Display Adapter do you    have?". This causes DESQview not to load a
video driver. This    will keep DESQview from saving and restoring graphics screens or   
virtualizing graphics.

On the Performance option, you can save 2K by setting the "Manage    Printer Contention?"
field to its default value of N. This means    that DESQview will not intervene to prevent two
programs from    printing at the same time.

On the Network option, you may disable the network support, or    decrease the size of the
buffer. This support is needed only for    certain network-specific program, and not for most
normal DOS    applications that are merely run off the network.

The amount of memory you will save will be about 5K plus the size    of the buffer reserved in
the second field. Unless you know that    you need this service, you should try running
without it and    seeing if you have problems without it that you do not have with    it. You
may also try decreasing the size of the buffer. The    default is 8K.

Return to Technotes Main Menu.

Maximizing Memory with PCMCIA

Quarterdeck Technical Note #298

 Q. On my notebook machine, the PCMCIA hardware and software seems to take
up a lot of space in High RAM.    What can I do to reduce this?

A. PCMCIA hardware and software, by default, may be configured to use more address
space than they require.    You can often adjust downward the amount of address space
reserved for your PCMCIA devices if you are NOT using an ATA hard drive or a memory card.

The example techniques below have been applied successfully with CardSoft PCMCIA
Card Services Support software from SystemSoft.    Notes follow for Phoenix PCMCIA
Card Services Support, AMI PCMCIA Card Services Support, and IBM's PCMCIA Card
Services.    If your system uses some other vintage of PCMCIA Card Services support
software, then consult the manual that came with your system for similar techniques.

CARDSOFT

1)     In your current CONFIG.SYS file, remove any EXCLUDE parameters that refer to the
D000 page on the QEMM386.SYS line.    Then add the parameter X=D000:16K to the end of
the QEMM386.SYS line. (Even a 16K EXCLUDE is probably excessive.    Most PCMCIA network
and modem cards require only a 4K EXCLUDE, and even this is only needed for the PCMCIA
diagnostic software to work properly. Some experimentation may be called for, depending
the PCMCIA devices in use on your system.)

2)    Copy your CONFIG.SYS to another file name so that you can restore it easily later.   
Create a new CONFIG.SYS file with only QEMM386.SYS and FILES=40 in it.    Place only the
parameters RAM X=D000:16K on the QEMM386.SYS line in    CONFIG.SYS.    Don't put any
other EXCLUDEs on the QEMM386.SYS line unless you know that they are required for some
other aspect of your system. The idea is to get QEMM to create High RAM, but to leave a
small range of address space unmapped.    This range may have to be increased if it is
insufficient to avoid conflicts; conversely, as noted above, the 16K may be reduced to as
little as 4K if you are using a device that requires little or no upper memory space (for
example, most PCMCIA modems). Copy AUTOEXEC.BAT to another file name.    Create a new
AUTOEXEC.BAT that preserves only your PROMPT and PATH lines.

3) Copy the PCMCIA software configuration file -- CSALLOC.INI, in our example -- to another
name; call it CSALLOC.QDK.

4)    Reboot with the minimal CONFIG.SYS and AUTOEXEC.BAT files you created in Step 1.

5)    Change to PCMCIA driver directory (in our case, CARDSOFT), and run the PCMCIA
configuration utility (in our case, CSALLOC) from the command line.    (Some versions of
CSALLOC also require a /G switch.)

6)    Verify that the CSALLOC.INI file (which will be an ASCII text file) is created with a line
that says MEM=D000-D3FF.

7)    Restore the original CONFIG.SYS and AUTOEXEC.BAT, and test your PCMCIA devices.    In
your CONFIG.SYS file, make sure that on your QEMM386.SYS line, you have an EXCLUDE that
matches the range that you EXCLUDEd above (e.g. X=D000:16K or X=D000:4K).

PHOENIX TECHNOLOGIES

If your system uses Phoenix Technologies PCMCIA Card Services Support software version
3.x, you may follow the steps above.    The only differences are:

The configuration file is named PCM.INI (instead of CSALLOC.INI).

The setup program is named PCMSETUP.EXE (instead of CSALLOC.EXE).

The default directory name is PCM3.

AMI

If your System    has AMI PCMCIA Card Services Support software installed, you may follow
the steps above.    The only differences are:

The configuration file is named AMICS.CFG (instead of CSALLOC.INI).

The setup program is named AMISRU.EXE (instead of CSALLOC.EXE).

The default directory name is PCMCIA.

IBM

IBM PCMCIA Card Services Support software normally comes with the Thinkpad series of
systems.    The IBM PCMCIA drivers need the memory address to be specified via the
Resource Map Utility, DICRMU01.SYS. This utility loads as a device line in CONFIG.SYS, and is
described in the documentation that comes with your computer.

Specify an appropriate address range via the /MA parameter to DICRMU01.SYS.    For
example, to set up a 16K address range at D000, and assuming that DICRUM0.SYS is in the
PCMCIA directory, the DICRMU01.SYS line would look like this:

DEVICE=C:\PCMCIA\DICRMU01.SYS /MA=D000-D3FF

If DICRUM01.SYS is in another directory, change the path accordingly.

Q. I installed QEMM on my system, and ran OPTIMIZE, and it seemed to identify
almost all of my upper memory addresses as High RAM. Is this correct?

A. Probably not.    QEMM and OPTIMIZE provide support for drivers that adhere to v2.1 of the
PCMCIA specification.    While the 2.1 spec is almost two years old as of this writing, many
vendors provide drivers that support only PCMCIA v2.0.    OPTIMIZE may, on such systems,
identify many more areas of adapter RAM than are actually present.    To work around this,
pass OPTIMIZE the /PCMCIA=xxxx-yyyy parameter, where xxxx is the starting address and
yyyy the ending address of the range used by your PCMCIA drivers.    The starting and
ending addresses can be determined    from your configuration files -- in our examples
above, CSALLOC.INI, PCM.INI, or AMICS.CFG -- or from the /MA parameter on the
DICRUM01.SYS line if you're using IBM's PCMCIA implementation.

For example, if your PCMCIA setup is using 16K at address D000, you should use the
OPTIMIZE parameter

 /PCMCIA=D000-D3FF

to ensure that OPTIMIZE is aware of the PCMCIA implementation on the machine.    Again,
you may be able to reduce the size of this range.

Microsoft Windows and QEMM:    Advanced Troubleshooting

Quarterdeck Technical Note #207

This Quarterdeck technical note has been written to help you    troubleshoot and fix almost
all Windows problems which relate    to the use of QEMM.    If you have an older version of   
QEMM or Windows, you should upgrade to the current versions before    engaging in
extensive troubleshooting.

TIPS AND QUICK FIXES FOR COMMON WINDOWS CONFLICTS

Conflict:
A CD-ROM drive will not function properly inside of MS    Windows.

Solution:
Edit the AUTOEXEC.BAT file and add "/E" (no quotes) to    the end of the line that contains the
MSCDEX.EXE    driver. This will move the CD-ROM buffers into    expanded memory and will
reduce the size of the MSCDEX    drive, allowing it to be loaded properly and function    in MS
Windows.

Conflict:
MS Windows video is distorted or unreadable.

Solution:
Using MS Windows SETUP, configure MS Windows to use the    standard VGA driver. If this
allows MS Windows to    display graphics correctly, then QEMM may be recovering    parts of
the video area that the video driver needs to    access. Adding the following parameters to
the end of    the QEMM386.SYS device line in the CONFIG.SYS file will    configure QEMM not
to touch the video area on most    systems:

 XST=C000 X=A000-C7FF

These parameters may reduce the available upper memory    by 64k, so if conventional
memory is low, the    troubleshooting flowchart (below) should be followed.

Conflict:
MS Windows fails to load, and displays an error message    that begins as follows:

 "Windows cannot set up an upper memory block at segment    B000."

Solution:
This conflict occurs because the video driver that MS    Windows is using needs to use the
monochrome text area.    Edit the CONFIG.SYS file and add the following    parameter to the
end of the QEMM386.SYS device line:

 X=B000-B7FF

 Alternately, you can install MONOUMB2.386 on your    system. MONOUMB2.386 is a driver
provided with Windows    that allows memory managers like QEMM to use the    monochrome
text area for High RAM, even if the video    driver is attempting to access that range. For   
instructions regarding the installation of    MONOUMB2.386, please refer to the README.WRI
file    included with your Windows installation.

Conflict:

After using MS Windows for a while, the system either    locks or a "General Protection Fault"
error occurs.

Solution:
MS Windows may be running low on System Resources.    Here are some tips to maximize the
amount of free    resources:

Do not load fonts that are infrequently used.
Use a small tiled bitmap for the wallpaper instead of a    large wallpaper bitmap.
Minimize groups not frequently used, or those with many    icons in them.
Because resources cannot be returned once they are used, do not open and close
resource-hungry programs.
If you are not loading QEMM 8's Resource Manager, do so by running QEMM Setup.   
Resource Manager is designed to alleviate resource shortages.
Keep an eye on your system resource with the QEMM memory reporting utility, or the
Manifest program, both in your Windows QEMM program group.

Conflict:
MS Windows fails to start properly.

Solution:
Start MS Windows with the "/B" (no quotes) parameter.    MS Windows will write any errors
encountered while    attempting to start to a file in the Windows directory    called
BOOTLOG.TXT. The BOOTLOG.TXT file lists the files and drivers that MS    Windows loads
when starting.    The success or failure of a driver or file to load as recorded in this file may
help you or a technical support representative determine the source of the problem.

TROUBLESHOOTING FLOWCHART

INSTRUCTIONS:
In each of the following steps you will either edit    a file or run a program from the DOS
prompt. Look for the ??? in    each step, as these will guide you through the appropriate   
troubleshooting procedures. Section One consists of four TESTs, which will identify what is
causing the conflict.    Section Two consists of four STEPs which will help you resolve the
conflict.

This troubleshooting procedure will isolate and resolve the    conflict most effectively if you
are able to reproduce the    conflict at will (you know of a specific action or series of    actions
that will cause the conflict to occur). The reason for    this is that this procedure follows a
logical set of tests to    determine when a conflict is occuring and when it is not. A    conflict
that randomly occurs is difficult to troubleshoot because    you do not know for sure when a
configuration is being used that    resolves the conflict.

SECTION ONE:    TESTS

TEST 1

CONFIGURING    WINDOWS TO AVOID CONFLICTS WITH QEMM: NOEMMDRIVER

 Edit the SYSTEM.INI file and locate the section titled [386enh].    Look in this section for a
line that looks as follows:

 NoEmmDriver=True

 ??? If this line exists in the [386enh] section, erase the line.    QEMM is an expanded memory
driver and this line conflicts    with MS Windows when using any expanded memory driver.
Try    to reproduce the conflict.

 ??? If the conflict goes away, congratulations! You have    resolved the conflict and are
finished with this technical    note.

 ??? If the conflict still exists then continue with the next step,    *MS WINDOWS
TROUBLESHOOTING PARAMETERS*.

 ??? If there is no line in the SYSTEM.INI that reads    "NoEmmDriver=True," continue with the
next step, *MS WINDOWS    TROUBLESHOOTING PARAMETERS*.        *MS WINDOWS
TROUBLESHOOTING PARAMETERS*

To determine whether a MS Windows setup problem is causing a    conflict:

        Start Windows 3.1 by typing WIN /D:FSVX

or

        Start Windows 95 by rebooting your system, pressing F8 during bootup, and
selecting the Safe Mode option.

 ??? If MS Windows functions properly with the above switches,    then adding the appropriate
settings to the SYSTEM.INI file    will resolve the conflict. Go to STEP A.

 ??? If the conflict still occurs then the MS Windows    configuration is not causing the conflict.
You should    continue with the next step (WIN.INI).

WIN.INI

 It it possible that a driver in the WIN.INI file is causing the    conflict. To determine if this is
the case, rename the WIN.INI    file to WIN.OLD.

 Start MS Windows and attempt to reproduce the conflict.

 ??? If the conflict goes away then go to STEP A.

 ??? If the conflict still exists then go to TEST 2.

TEST 2

CREATING A CLEAN ENVIRONMENT FOR QEMM

In order to ensure that the MS Windows conflict is not being    caused by another program in
memory, temporarily disable all lines    in the CONFIG.SYS and AUTOEXEC.BAT files that are
not a part of    QEMM and are not needed to start MS Windows. To do this, place    the word
REM in front of the line and attempt to reproduce the    conflict. Please note that if your hard
drive is compressed or    requires a driver to be loaded then those drivers should not be   
REMarked out.

Some conflicts require other drivers or TSRs to be loaded in order    to attempt to reproduce
the conflict; these drivers should NOT be    REMarked out. For example, if the conflict is

related to a CD-ROM,    the drivers for the CD-ROM must be loaded. These drivers should   
NOT be REMarked out.

Once the REMark statements have been added to both the CONFIG.SYS    and AUTOEXEC.BAT
files, reboot the system and attempt to reproduce    the conflict.

 ??? If the conflict goes away, go to STEP B.

 ??? If the conflict still exists, go to TEST 3.

TEST 3

SIMPLIFYING QEMM

 Because QEMM is extremely thorough when recovering and using    upper memory, it is
possible that one of QEMM's advanced features    is adding to the conflict with MS Windows.
Please follow steps a)    through e) to disable these features.

a) To ensure that there is no conflict in upper memory, you should eliminate all High RAM
and test the system.    Run QEMM Setup in Windows and choose the option "Fill upper
memory with RAM" (In DOS, select "Review or change QEMM parameters", and then the "Fill
upper memory with RAM" option. You should select "NO" to ensure that QEMM will not create
High RAM.

b) To disable Stealth, select "Stealth system and video ROMs" from the QEMM Features tab
in QEMM Setup ("Review or change QEMM parameters" in the DOS version of QSETUP).    You
will be presented with the following options:

        Stealth Off
        Stealth Mapping
        Stealth Frame

 ???    If the "Stealth Off" option is highlighted then Stealth is not currently enabled and is not
adding to the conflict. Make a note that you were not using Stealth and proceed to step c)
below.

 ???    If either "Stealth Mapping" or "Stealth Frame" are highlighted then you should make a
note of the Stealth mode that you were using and highlight the "Stealth Off" option to
temporarily disable Stealth.

c) The QEMM Setup program can also place QEMM in a troubleshooting mode, adding many
troubleshooting parameters to the QEMM386.SYS device line.

To add the troubleshooting parameters select Troubleshooting Parameters (In DOS, the
"Review or change QEMM parameters" QSETUP menu, hit <Page Down> twice and select
"Set up QEMM for troubleshooting".)    This will add all of the general troubleshooting
parameters to the QEMM386.SYS line.

d) QEMM's DOS-Up feature can load more of DOS into upper memory than DOS itself,
freeing more conventional memory.    It is possible that a program is expecting most of DOS
to be in conventional memory, and disabling DOS-Up will eliminate that conflict.    In
Windows, select "Do not use DOS-Up" from the DOS-Up property page.    In DOS, from the
QSETUP Main Menu, select "Enable or disable DOS-Up," followed by "No."

e) To disable QEMM's Stealth D*Space feature from the QSETUP main menu, select "Enable
or disable Stealth D*Space" and make note of whether you are using Stealth D*Space (if
"Yes" is highlighted) or not (if "No" is highlighted).    Set this option to "No."

 f) To disable QEMM's MagnaRAM, FreeMeg, and Resource Manager, edit the SYSTEM.INI file,
and search the [Boot] section for the line:

                  drivers=freemeg.dll rsrcmgr.dll

and remove "freemeg.dll" and "rsrcmgr.dll" from the line.    Then search the [386Enh] section
for the line:

                  device=C:\QEMM\MAGNA31.VXD

and place a semi-colon in front of the word "device".    Save the file with the corrections.

After the changes in steps a) through f) have been made, save the configuration and allow
the Optimize program to run.

Once Optimize has completed, try to reproduce the conflict.

 ???    If the conflict goes away then reconfiguring QEMM will resolve it. Go to STEP D below.

 ???    If the conflict still exists, go to TEST 4.

TEST 4

USING THE DOS MEMORY MANAGERS INSTEAD OF QEMM

If all of the above tests fail to resolve the conflict, there may    be an incompatibility with DOS
that is not related to QEMM. You    need to ensure that the system is functioning properly
with ANY    memory manager.

The QEMM386.SYS driver should be REMarked out of the CONFIG.SYS to    disable QEMM.

Next, add DOS's memory managers, HIMEM.SYS and EMM386.EXE, at the    beginning of the
CONFIG.SYS as follows:

EXAMPLE:

DEVICE=C:\DOS\HIMEM.SYS    DEVICE=C:=DOS\EMM386.EXE RAM 1024    REM DEVICE=C:\
QEMM\QEMM386.SYS <troubleshooting parameters>

 NOTE: The RAM and 1024 parameters should be added to the    EMM386.SYS device line.

Save the configuration, reboot the system, and test to see if the    conflict still exists.

 ??? If the conflict goes away, go to STEP D.

 ??? If the conflict still exists then it is unrelated to QEMM.    Since the conflict exists without
QEMM loading,    troubleshooting QEMM further will not affect the conflict.    We recommend
that you contact the manufacturer of the    application that is failing, or contact Microsoft if
MS    Windows itself is not operating correctly. You are finished    with this technical note.

SECTION TWO:    STEPS FOR RESOLVING THE PROBLEM   

STEP A:    CONFIGURING MS WINDOWS

 ??? If the /D:FSVX switch resolved the conflict:

 Each of the letters in the parameter "FSVX" represent a different    SYSTEM.INI setting:

SWITCH SYSTEM.INI SETTING
/D:F 32BitDiskAccess=FALSE
/D:S SystemROMBreakPoint=FALSE   
/D:V VirtualHDIRQ=FALSE
 /D:X EMMExclude=A000-FFFF

Test MS Windows with only one of the above switches at a time    to determine the setting
that needs to be added to the    [386enh] section of the SYSTEM.INI file. Once you have   
determined the switch that resolves the conflict, add the    corresponding SYSTEM.INI setting
the the [386Enh] section of    the SYSTEM.INI file. You are finished with this technical    note.

 ??? If renaming WIN.INI to WIN.OLD resolved the conflict:

 You have isolated the conflict to something loading in the    WIN.INI file. To determine exactly
which program is causing    the conflict, rename the WIN.OLD file back to WIN.INI, edit    the
WIN.INI file, and locate the lines that begin with    "LOAD=" (in the [Windows] section).
Disable the "LOAD=" lines    one at a time (by placing a ; at the beginning of the line)    and
try to reproduce the conflict. When the conflict goes    away, the last line that was disabled
contains the driver    that is causing the conflict. You are finished with this    technical note.

STEP B:    RESTORING FROM A CLEAN BOOT

One of the drivers or TSRs that you have placed a REM statement in    front of is causing the
conflict. In order to identify which    driver or TSR is causing the conflict you should remove
the REMark    statements from the beginning of each line in the CONFIG.SYS and   
AUTOEXEC.BAT files one at a time. By rebooting and trying to    reproduce the conflict after
each change you can identify the    program that is conflicting with MS Windows.

 When the conflict reoccurs, the program loading on the last line    that you removed the
REMark statement from is causing the    conflict. Contacting the manufacturer of the program
is the    easiest way to resolve the conflict; however, Quarterdeck    Technical Support has
found that the following suggestions resolve    many other programs' incompatibilities:

Configure the program NOT to use expanded memory. Some    programs misuse
expanded memory, and by configuring them to use    extended or conventional
memory the conflict with MS Windows    may be avoided. Consult the program's
documentation for    configuration options.

 Try loading the program low. Some programs are written with    the assumption that
they will be loaded in conventional memory    and fail to function properly when
loaded into upper memory.    If the program is able to load itself into uppper memory, 
disable this feature to ensure that it is not adding to the    conflict.

Contact the manufacturer of the program to acquire the latest    version of the
program. Newer versions may contain    compatibility fixes for known conflicts.

 You are finished with this technical note.

STEP C:    REBUILDING QEMM

 HIGH RAM

The first step in rebuilding the system is to allow QEMM to create    High RA M. To do this, run
QSETUP, select "Review or change QEMM    parameters" followed by "Fill upper memory with
RAM." Save this    configuration, reboot the system, and try to reproduce the    conflict.

 ??? If the conflict does NOT occur then there is no upper memory    conflict. Go to the next
section, STEALTH.

 ??? If the conflict reappears then the conflict is related to    upper memory. The technical
note EXCLUDE.TEC will help you isolate the area in    upper memory that is causing the
conflict and help you    correct the problem. You are finished with this technical    note.

STEALTH

In this step you will determine if QEMM's STEALTH feature is    causing the conflict.

 ??? If you noted in TEST 3 that Stealth was NOT being used then    there is no need to test
Stealth. Proceed to the next    section, DOS-UP.

 ??? If you noted in TEST 3 that the Stealth feature was being    used then the next step in
rebuilding QEMM is to enable    Stealth and see if the conflict occurs. Run QSETUP, select   
"Review or change QEMM parameters" followed by "Stealth    system and video ROMs."
Select the appropriate Stealth mode    based upon the mode that you noted in TEST 3. Save
this    configuration, reboot the system, and try to reproduce the    conflict.

 ??? If the conflict does not occur, go to the next step, DOS-Up.

 ??? If the conflict recurs then the conflict is related to    Stealth. The Stealth troubleshooting
technical note STEALTH.TEC should be followed in order to fine tune Stealth to avoid the   
MS Windows conflict. You have identified the conflict and are    finished with this technical
note.

 DOS-UP

To determine whether the DOS-Up feature is adding to the conflict,    you should enable this
feature again.

From the QSETUP Main Menu, select "Enable or disable DOS-Up"    followed by "Yes." This will
fully enable the DOS-Up feature.    Save the configuration, allow Optimize to run, and try to   
reproduce the conflict.

 ??? If the conflict does not occur then the DOS-Up feature is not    adding to the conflict. You
may proceed to next step,    Stealth D*Space.

 ??? If the conflict recurs then DOS-Up is adding to the conflict.    By partially enabling the
DOS-Up feature you can still    receive the benefits of DOS-Up while avoiding the conflict   
with MS Windows.

 From the QSETUP main menu, press the "U" key to "Enable or    disable DOS-Up," then the
"P" key for a "Partial" DOS-Up    configuration. This brings you to the DOS-Up Options screen   
which allows you to turn on or off the loading high of the 4    parts of DOS.

1 = DOS Resources No   
2 = COMMAND.COM No   
3 = DOS Data No   
H = DOS=HIGH No     

Test the system by enabling only one of these options at a    time, rebooting, and trying to
reproduce the conflict after    each change to isolate which part of DOS-UP is causing the   
conflict. Once the option that is causing the conflict is    isolated, setting the option to "No" in
QSETUP will ensure    that this part of DOS-Up will not be enabled by QEMM's    Optimize
program in the future. You are finished with this    technical note.

 STEALTH D*SPACE

 This test will determine if the Stealth D*Space driver is adding    to the MS Windows conflict.

 ??? If you noted in TEST 3 above that you were using the Stealth    Doublespace feature then
run QSETUP, select "Enable or    disable Stealth D*Space," and set this option to "Yes." Save   
the configuration, reboot the machine, and try to reproduce    the conflict.

 ??? If the conflict recurs then the Stealth D*Space feature is    adding to the conflict. A
common cause of conflicts with the    Stealth D*Space driver is programs that misuse
expanded    memory. Try configuring other device drivers and TSRs on the    system to NOT
use expanded memory. You may need to consult    the documentation for the programs that
you are loading to    learn how to do this.

 ??? If you noted in TEST 3 that you were NOT using Stealth    D*Space OR if setting the
Stealth D*Space option to "Yes" did    not cause a conflict, the QEMM troubleshooting
parameters    resolved the conflict. The following is a list of the    troubleshooting parameters
that QSETUP added:

 DB:2, RH:N, SH:N, TM:N, XBDA:N, TR:N, CF:N, FILL:N, MR:N

You may remove one of these parameters at a time, save the    file, reboot the system, and
attempt to reproduce the    conflict. When the conflict occurs then you know that the    LAST
parameter that you removed was necessary to avoid the    conflict and you should keep that
parameter and remove the    rest. You are finished with this technical note.

STEP D:    CONTACTING TECHNICAL SUPPORT

The conflict that MS Windows is experiencing requires further    troubleshooting techniques
and investigation, and contacting our    technical support department is the quickest and
easiest way to    resolve the conflict. Please mention that you have followed this    technical
note and were instructed by STEP D to contact    Quarterdeck for additional troubleshooting
steps.

Our technical support department is easily reached via the following electronic channels:

CompuServe (GO QUARTERDECK)
Internet (mail    support@qdeck.com or the comp.os.msdos.desqview Usenet

newsgroup)
The Quarterdeck BBS (310-309-3227)

By fax (310-309-3217)

When    contacting Quarterdeck, be sure to fully explain the symptoms of    the conflict, the
results of the tests performed while following    this technical note, and include the following
information:

CONFIG.SYS (in the root directory, usually C:\)
AUTOEXEC.BAT (in the root directory, usually C:\)   
SYSTEM.INI (in the MS Windows directory, usually C:\WINDOWS\)   
WIN.INI (in the MS Windows directory, usually C:\WINDOWS\)

 You can also call our Technical Support line at 310-309-4250 for    further assistance. When
you call, please be at the machine that    is experiencing the conflict.

Return to Technotes Main Menu.

3COM TCPIP 2.1 (3COM)                 
DECNET (Digital Equipment Corp.)
PC/TCP 2 and 3 (FTP)
LANMAN 2.1 (Microsoft)
EMSNETX and VLM.COM (Novell)

QEMM's Optimize program does not support more than one level of INCLUDE statements in a
CONFIG.SYS with multiple configurations. You can use INCLUDE statements with Optimize,
but you cannot use an INCLUDE statement inside a CONFIG.SYS block that has already been
included in another block.

If you have more than one level of INCLUDE statements, you must edit your CONFIG.SYS file
before running Optimize and make sure that all INCLUDE statements below the first level are
replaced with the actual CONFIG.SYS lines which the INCLUDE statement formerly invoked.

It is possible to load so many TSRs and device drivers on your system that you may run out
of memory during the OPTIMIZE process!

Please refer to the technical note MAXMEM.TEC for suggestions on improving your pre-
OPTIMIZE configuration.    In cases where OPTIMIZE does not complete successfully, you may
wish to try taking advantage of expanded memory by skipping the hardware detection
phase as noted above.

OPTIMIZE's Stealth Testing process is the best way to ensure both maximum memory and
maximum compatibility with your system.    To take advantage of this feature, make sure
that you're starting from a stable, bootable QEMM configuration.    Typically the line
"DEVICE=C:\QEMM\QEMM386.SYS ON" will allow you to boot your system safely.    From this,
you may run OPTIMIZE's Stealth Testing procedure as follows:

1) At the DOS prompt, type "OPTIMIZE /REMOVEALL" to remove LOADHI commands and
parameters from all of the lines in CONFIG.SYS, AUTOEXEC.BAT, and any batch files called
from AUTOEXEC.BAT.

2) Edit CONFIG.SYS and remove all parameters except ON from the QEMM386.SYS line in
CONFIG.SYS.

3) At the DOS prompt, type "OPTIMIZE /ST".

The Stealth Testing process provides maximum compatibility with your system, at the
possible expense of some High RAM or conventional memory.    If this is the case, see the
previous topic LESS CONVENTIONAL MEMORY AVAILABLE.

PAGEOVERCOMMIT

The PAGEOVERCOMMIT=n setting appears in the [386Enh] section of the Windows 3.1
SYSTEM.INI file. It determines the size of linear memory, which is the address space that
Windows programs see when they allocate memory from Windows.

If the PAGEOVERCOMMIT statement does not appear in the SYSTEM.INI file, Windows 3.1
defaults to a value of 4, which means that the size of linear memory will be four times the
amount of physical memory (installed RAM) on your machine. (The size of linear memory is
fixed at two gigabytes in Windows 95, and the PAGEOVERCOMMIT statement is no longer
needed or used.)    QEMM will normally set PAGEOVERCOMMIT to 8, which is twice Windows
3.1's default. The allowable values of PAGEOVERCOMMIT are 1 through 20.

If the value of PAGEOVERCOMMIT is too small, then some of the physical or virtual memory
on your system will go to waste, because there will be no addresses for Windows 3.1 to give
out to programs, even if the memory is available.    If PAGEOVERCOMMIT is too big, however,
Windows 3.1 wastes precious physical memory to keep track of unneeded linear memory
addresses.

The best way for you to determine how big PAGEOVERCOMMIT should be is to monitor
MagnaRAM's performance on the QEMM screen. Open a number of programs until physical
and virtual memory have been almost used up, and then check the amount of available
linear memory. If there is quite a bit of linear memory left, try decreasing PAGEOVERCOMMIT.
You want to arrive at a value of PAGEOVERCOMMIT that leaves some available linear
memory behind when physical and virtual memory are used up, but does not leave too
much.

There is a technical note included in this Help file on the subject of maximizing memory
while using PCMCIA adapters.   

Parity Errors

Quarterdeck Technical Note #128

Q. What is a parity error?

A. The memory controller chip on your PC reports a parity error    when it reads a byte of
data and the 9 bits it used to encode    the byte do not add up to 1 (odd parity). Parity errors
are    always hardware-related. Software applications cannot cause    parity errors, although
an application may cause one to be    detected.

In the digital world, all information is represented by the    binary numbers 0 and 1. The
binary digit, or bit, is the    fundamental building block of digital information in a    computer,
and it stores information in two states: off or on    (0 or 1, respectively). One bit can make a
big difference.    Here's why:

The binary number for the letter U is:

01010101

If you change just the fourth bit over from the left, from one    state to the other, the binary
number becomes the letter E.

01000101

Now while there are 8 bits in a byte, your memory controller    handles information 9 bits at a
time. This extra bit is called    a "parity bit", and is the computer's way to verify the    integrity
of your data. Whenever you write data to memory, the    memory controller adds up the
number of 1's in each byte of    information, and then sets the ninth bit to make the sum of
all nine    bytes odd. IBM, the original designers of the PC, could have    chosen to make the
sum of the nine bytes even (even parity),    but they chose to store data in memory with odd
parity and    every other PC manufacturer followed suit.

In the example above, the letter U has the binary value of    01010101, which has 4 1s in it,
and the letter E is 01000101,    which has 3 1s in it. When your PC reads each byte of data, it 
sums the 9 bits to make sure the number of 1s in the byte is    still odd. If the state of a
single bit gets changed from 1 to    0, or 0 to 1, the parity of the nine bits becomes even and
the    memory controller asserts the NMI (Non-Maskable Interrupt).    This signal is put directly
on a pin of the CPU, then the code    pointed at by Interrupt 2 posts a Parity Error message,
which    warns you that there is a problem with your RAM.

Q. Why am I getting parity errors on my system since I installed    QEMM?

A. As stated above, parity errors are indicative of a hardware    problem. The error may
appear since you've installed QEMM    because QEMM gives you and your applications access
to memory    that may never have been used before, and which could be    marginally bad.

 Q. How do I determine which piece of hardware is causing the    problem?

A. First, check is the RAM in your system. An easy test is to    disable everything that uses
EMS and XMS memory so you can    create a RAMDRIVE the size of all your system memory.
(Refer    to your DOS manual for information on creating a RAMDRIVE.)

Then:

a) Run CHKDSK on the RAMDRIVE

or   

b) Copy files to the RAMDRIVE until it is full.

Either way, if you have bad memory on your system, eventually    you will get a parity error
or a General Drive Failure on the    RAMDRIVE.

The first thing you can do to try to remedy this problem is to    make sure that the RAM chips
are seated properly in their    sockets. If they are DRAMs or SIPPs, make sure the pins aren't   
broken off or bent. If they are SIMMs or the memory is on a    card, you may just need to
clean the contacts. If the chips    physically check out ok, the chip speeds could be
mismatched    with memory that is too slow for the CPU/memory bus, or a    controller chip
could be bad. At this point the only sure way    to test this is to swap out the chips for ones
that you know    are good.

Parity errors may also be caused by the presence of an    autoswitching video card or one
that is using 16-bit ROM    access. Your motherboard could be assigning parity to the   
address space where your EMS page frame is located. Also there    may be some special
features of the computer in the CMOS Setup    that could be causing problems. Try disabling
the computer's    shadowing of BIOS or video ROM or turning off memory caching or    other
features to see if one of them is involved. This may    allow you to pinpoint the cause of the
problem. In all these    cases you should refer to the documentation that came with your   
hardware product to disable a particular feature.

Q. I ran a hardware diagnostic program on my machine, and it    didn't report bad
memory. Why not?

A. While there are several diagnostic programs on the market that    will test your memory
for errors, they may not duplicate    conditions that would cause marginal memory to fail.
Most are    not even designed to be run with a memory manager. When parity    errors are
encountered, it is time to have the hardware    components of the machine examined.

Q. Is there any software I can use to get around this problem?

A. No. Note that all of the parity operations are performed    directly by your computer's
hardware, regardless of which    operating system (DOS, OS/2, UNIX) you use and regardless
of    which utility programs or application software you run. One    exception is Macintosh
computers, which use 8 bit SIMM chips    that do not have parity. When errors occur, the
system just    malfunctions from the invalid data. Also remember that parity    checking will
only detect if one bit in a byte gets changed. If    two bits in the same byte get changed it will
accurately    reflect that the sum is still odd and errors will not be    detected.

Return to Technotes Main Menu.

Product Compatibility Information

Quarterdeck Technical Note #248

The following is a list of various hardware and software which our    Testing and Compatibility
Department has determined requires special attention in order to be compatible with QEMM
and/or    StealthROM. These notes are as accurate as possible at the time    of writing, but as
technology advances, this information    may change from time to time.        Also note that
when an entry states that excludes within a certain    area are needed, you can use QEMM's
ANALYSIS procedure to    determine the exact areas that need to be excluded from QEMM's   
use. See Chapter 9 of your QEMM manual for details.

HARDWARE

MISCELLANEOUS LAPTOPS
After a QuickBoot, laptops with Advanced Power Management will assume their default
power-on speed.    If you note that your laptop is running faster or slower than you expect
after a QuickBoot, check the default power-on configuration settings, and adjust them
accordingly.

ACER 1120SX
This system may need exclusions in the F000-FFFF area if you are    using the StealthROM
feature. On the particular systems that    Quarterdeck tested, the parameters X=F300-F3FF
and X=FA00-FAFF    were needed with StealthROM. Current versions of OPTIMIZE will    likely
handle this machine more elegantly; or your system may    require different exclusions. In
addition, the Acer 1120sx may    need X=C600-C7FF on the QEMM device line even without
StealthROM.

ADAPTEC ASPI DRIVERS
If the ASPI4DOS.SYS or ASPI2DOS.SYS device driver is loaded before    QEMM386.SYS, you
may need to exclude up to 12K of the F000-FFFF    range when using QEMM's Stealth
function. This problem does not    occur if ASPI4DOS is loaded after QEMM, but in this case
QEMM will    use 2K of conventional memory for a disk buffer to prevent    bus-mastering
problems when ASPI4DOS loads high. For more    information on bus-mastering controllers,
see BUS-MAST.TEC,    included in the QEMM\TECHNOTE directory.

AT&T GLOBALYST
The AT&T Globalyst 360 Pentium (and potentially other machines with recent Award BIOSes)
have large ROMs in the E000 region.    OPTIMIZE's Stealth Testing process will complete
without user intervention, but will not Stealth all of the ROMs on the machine. Much of this
ROM is INCLUDEable through the QEMM Analysis procedure if you add the parameter

S=EF00:4K

to the end of the QEMM386.SYS line in CONFIG.SYS.    The unStealthed ROMs have no
interrupts pointing into them; see the technote STLTECH.TEC for an explanation.

ATI LOCAL BUS VIDEO CARDS
Current versions of QEMM include special support for ATI video    cards, so exclusions
required in the past may not be necessary.   

COMPAQ LAPTOPS AND NOTEBOOKS WITH PCMSMIX.EXE

Some Compaq laptops and notebooks come with a program called PCMSMIX.EXE, the
purpose of which is to allow the machine to receive incoming faxes while in power-saving
mode.    This program comes into conflict with QEMM's QuickBoot feature.    For this reason,
OPTIMIZE disables QuickBoot whenever PCMSMIX is loaded in CONFIG.SYS.

COMPAQ SYSTEMS
If your Compaq machine does not recognize memory above the 16MB    line, add the
parameter

        USERAM=1M:xxM

where xx is the amount of memory that you have on your machine.    See the information on
the USERAM parameter above for more    details.

COMPAQ XL SYSTEMS AND PCNTNW.COM
Compaq XL desktop machines ship with a program called PCNTNW.COM,    which is a driver
for the built-in network interface hardware on    XL systems. It is reported that the Compaq
network hardware is    bus-mastering, and that PCNTNW makes VDS calls to eliminate   
potential conflicts between the network hardware and memory    managers like QEMM. This
means that it may be necessary to make    PCNTNW load low, by adding the word PCNTNW to
the OPTIMIZE.NOT    file in your QEMM directory. If no such file exists, create one    that
contains the single line PCNTNW. See Chapter 3 of the    Reference Manual for more
information on OPTIMIZE.NOT.

There are also unconfirmed reports that the QEMM parameter    EXCLUDE=F600-FFFF is
needed on some Compaq XL systems.

DEC CELEBRIS and VENTURIS
These machines may be affected by the "Plug and Play BIOS Machines"    anomalies
described below.

GATEWAY 2000
Some models of Gateway machines may be affected by the "Phoenix    Green BIOS"
anomalies described below.    Others may have an STB PowerGraph 64 PCI video card, also
noted below.

GRAVIS ULTRASOUND
The MegaEM emulator for Gravis Ultrasound may require the P:VME:N    parameter to be
added to the QEMM386.SYS line in CONFIG.SYS.

HEWLETT PACKARD OMNIBOOK 600
This machine will report an Exception #13 at startup until you apply the following
information.    QEMM will detect that the B000-B7FF and C000-EBFF regions on this machine
contain Adapter RAM, and thus will not create High RAM in these areas by default. However,
you may INCLUDE these regions by adding I= parameters to the QEMM386.SYS line in
CONFIG.SYS. Power management routines exist in the EE00-EEFF region, and this area must
be EXCLUDEd. Finally, the address range used by any PCMCIA hardware on the system must
also be EXCLUDEd.    The range in question depends on your PCMCIA configuration; refer to
the PCMCIA.TEC technote in your QEMM directory for further information on determining the
range appropriate for your system.    A typical QEMM386.SYS line for an OmniBook will
include these parameters

I=B000:32K I=C000:176K X=EE00:4K X=D000:8K

on the QEMM386.SYS line in CONFIG.SYS, where the starting point and the size of the last

parameter will vary depending on your PCMCIA setup.

HEWLETT PACKARD VECTRA
Some models of this machine may require the QEMM386.SYS parameter S=F400:4K to
support graphics modes properly when Stealth is active.    Some may also require the
parameter X=F000:8K for the Sleep mode to work properly.

IBM PS/2 MODEL L40SX
This laptop may need the following excludes in order to work with    ST:M:

X=E000-E0FF X=E200-E3FF X=E600-E6FF.

The ST:F method requires no excludes. The Suspend/Resume feature    works on this system
automatically.

IBM TOKEN RING CARDS
Users of PS/2's with Token-Ring cards and QEMM may observe that    conventional memory
ends at 576K rather than 640K. A Token-Ring    network card has both an adapter RAM and
ROM in upper memory,    either 8 or 16K in size. The default addresses for the RAM and   
ROM are D800 and CC00, respectively. This default configuration    may not allow room in
upper memory for the EMS page frame,    especially on PS/2 systems. If the page frame does
not fit in    upper memory, QEMM will place the page frame in the last 64K of    conventional
memory, decreasing the memory in which programs can    run. A message will be posted
during boot up if the page frame has    been placed in conventional memory.

On a PS/2, you can resolve this problem by using your PS/2    reference diskette to move the
Token-Ring adapter RAM and ROM to    one end or the other of available upper memory. The
idea is to    create a contiguous 64K area for the page frame rather than having    your upper
memory addresses broken up into small unusable regions.    Moving both RAM and ROM as
low as possible in the C000 area is    usually a good choice. On non-PS/2 system, if the
address ranges    of the card are movable, contiguous address ranges starting at    D000 are
often a good choice.

If you use QEMM's StealthROM feature, the page frame will    usually remain in upper
memory even with the Token-Ring card    hogging the address space because StealthROM
clears the area of    the ROMs between E000 and FFFF. However, in order to get the   
maximum memory available, you should still make the contiguous    free areas in upper
memory as large as possible by moving the    adapter RAM and ROM to different locations.

When you use the StealthROM mapping method (ST:M) the default    Token-Ring configuration
will force the page frame to go to EC00,    whereas QEMM would normally try to maximize
memory by placing the    page frame at C000. You can put the page frame at C000 by using   
the reference diskette to move the Adapter RAM and ROMs out of    the C000-CFFF range. In
this case, the best places to put the    Token-Ring adapter RAM and ROM are probably at the
beginning of    the D000 area, as close to each other as possible.

INVISIBLE NETWORK
If you use the boot ROM on the Invisible Network card, it loads    32K of code into the top of
the conventional memory address    space and grabs interrupt 13. A much better solution
than to    use XSTI=13 and an appropriate exclude is to disable the ROM    on the network
card and load IS2BIOS instead. This will give you    32K of conventional memory (since
IS2BIOS can be loaded high)    and you will not have the network card's ROM breaking up
your    upper memory address space.

MICRO ELECTRONICS WINBOOK

Our testing has shown that on a certain call to the APM (Advanced Power Management) BIOS
routines on the Micro Electronics WinBook XPS, the keyboard controller may send an escape
key, which will cause the exit screen to appear, or which may cause an apparently locked
keyboard. The latter symptom may be remedied by moving the
mouse while holding down a key. Micro Electronics has been informed of the problem.

NEC VERSA
This machine may be affected by the "Plug and Play BIOS Machines"    section described
below.

ORCHID TECHNOLOGY KELVIN 64 VIDEO CARD
The Kelvin EZ Setup utility that comes with this card permits video resolution switching while
inside Microsoft Windows.    This utility, when Stealth ROM is active, requires the EMS page
frame to be placed at C000, or requires the SVGA:256 parameter if the page frame is not at
C000.

PHOENIX PCMCIA CARD MANAGER
The Phoenix Technologies PCMCIA Card Manager software includes a    driver called
CNFIGNAM.EXE that, in version 3.0 of the Card    Manager (and perhaps in other versions),
will give an error    message and refuse to load if Optimize attempts to load it high.    To
prevent this problem, add a new line containing only the word    CNFIGNAM to the
OPTIMIZE.NOT file in your QEMM directory. If no    such file exists, create one that contains
the single line    CNFIGNAM. See Chapter 3 of the Reference Manual for more    information on
OPTIMIZE.NOT.

PLUG AND PLAY BIOS MACHINES
The Plug and Play configuration driver DWCFGMG.SYS conflicts with OPTIMIZE and, in our
experience, with MS-DOS's memory    management utilties as well.    By default, the
OPTIMIZE.NOT file contains an entry which will cause the driver to load low, which we
recommend.    Unless you are using Plug and Play compatible    hardware, you may consider
removing this driver altogether.

PLUS IMPULSE/HARDCARD II
These hard drives may need the XST parameter applied to their    ROM(s) when using
Stealth. The default location for a Hardcard II    ROM, for example, is C800. In this case
adding XST=C800 to the    QEMM386.SYS device line may be necessary. If you are unsure of   
the location of your Hardcard II or Impulse disk ROM, consult the    documentation that
accompanied your drive.

PSI HYPERSTOR 816/1600 HARD DISK CONTROLLER
Some versions of this controller may require that the page frame    be located at the
beginning of the controller's ROM (which is    often at C800.) A small exclusion in the F000-
FFFF range may    also be necessary; use the QEMM Analysis procedure.

QLOGIC FAST SCSI CONTROLLER
Certain models of this controller may require the XBDA:N parameter to QEMM, and may also
require the parameter XST=nnnn, where nnnn is the address of the ROM on the controller
(typically C800 by default).

SETUP PROGRAMS, SETUP HOTKEYS
On some machines it is possible to access the computer's setup    program at any time by
pressing a hotkey. Other machines provide    software programs for system configuration. On
many of these    systems you must EXCLUDE some portion of the F000-FFFF range in    order
to use these programs when QEMM's StealthROM feature is    enabled, or treat the entry
point to these programs with an S=    parameter. Hotkey-based setups usually work without

exclusions if    you are using the ST:F feature. The most practical way to deal    with this
problem is to avoid EXCLUDEs and to prevent QEMM from    loading on the rare occasions
when you need to access your system    setup program. If you prefer to sacrifice High RAM
areas in order    to run the system setup with StealthROM active, you can use    QEMM's
Analysis procedure to determine the areas you must exclude,    providing that a reboot is not
forced when exiting the setup    program.

OPTIMIZE may be able to help you find an appropriate S= parameter to permit running the
system setup, at a lower cost in High RAM.    To find the right parameter, end the
AUTOEXEC.BAT file with the
command

PAUSE

and when your system pauses at the end of AUTOEXEC.BAT during the Software Detection
Phase, press the hotkey combination for your system's Setup program. If possilble, exit the
setup program by returning to DOS, rather than using the option to save settings and
reboot. OPTIMIZE will regain control of the system, and should detect the appropriate S=
parameter.

SMC NETWORK CARDS AND THE SMCPWR.COM DRIVER
Some SMC network cards ship with a driver called SMCPWR.COM.    In some cases, this card
may exhibit incompatibilities with QuickBoot, such that the machine may hang instead of
resetting on a soft reboot.    If you experience this problem, you may choose simply to reboot
via the power switch, or to disable QuickBoot via the BE:N parameter on the QEMM386.SYS
line in CONFIG.SYS.

STB 800/16 VGA CARD
This graphics card works well with the page frame at C000 when    the StealthROM mapping
method (ST:M) is in effect. QEMM places    the page frame at C000 by default when ST:M is
enabled. If ST:M    is enabled and the page frame is not at C000, it is likely that    some
obstruction is preventing QEMM from putting the page frame there    safely. In this case, you
may need to exclude a portion of the    C000-C7FF area.

STB POWERGRAPH VIDEO CARDS
On certain systems with shadow RAM, we have observed a conflict    between the STB
PowerGraph video card and systems with hardware    ROM shadowing. QEMM does not cause
the problem, but helps to    expose it. This problem causes QEMM to report that it cannot find 
the ROM handler for INT 10 and to disable the StealthROM feature.    The best workaround is
to disable hardware video ROM shadowing    on the motherboard of such systems, and to use
QEMM's ROM    parameter instead. Note that QEMM's ROM parameter can provide    similar
functionality, and write-protects the ROM in the process,    avoiding the problem. An
alternative is to disable QEMM's use of    Shadow RAM with QEMM's SH:N parameter.

TOSHIBA LAPTOPS, POP-UP MENU
A feature of various Toshiba laptop computers is a pop-up menu    that displays information
on the status of the computer's battery.    In order for this pop-up menu to work when the
computer is in    Virtual 8086 mode (that is, when QEMM is providing expanded memory    or
High RAM) a TSR called T386.EXE must be run. This tiny program    and its accompanying doc
file (T386.DOC) are included on the QEMM diskettes.

TOSHIBA 4400SXC
If you use the battery pop-up feature of this system, you may need    the QEMM parameters
X=F400-F7FF and X=FC00-FFFF. You may be able    to narrow these excludes somewhat. (The
T386.EXE file mentioned in    the previous section may be needed for the battery pop-up

feature    to work.)

TOSHIBA 5100
This computer may be incompatible with the StealthROM mapping method    (ST:M).
OPTIMIZE should automatically detect and work around any    such incompatibility.

ULTRASTOR DISK CONTROLLER
If you have an UltraStor SCSI disk controller and you are using    QEMM's DOS-Up feature and
you see a "device not found" message    during bootup, you may be able to fix this problem
with the    FIXINT13.SYS driver which accompanies QEMM. This driver is    misnamed
INTFIX13.SYS in the QEMM manual. Load the driver    as the line immediately before
QEMM386.SYS in CONFIG.SYS, and add    the /STACKSIZE parameter. For example:

DEVICE=C:\QEMM\FIXINT13.SYS   
DEVICE=C:\QEMM\QEMM386.SYS RAM <your other parameters>

Some other SCSI disk controllers may also be fixed by this driver.

WESTERN DIGITAL SUPER VGA CHIPSETS AND WINDOWS DRIVERS
In at least one version of the Microsoft Windows Super VGA drivers for cards using the
Western Digital WD90C11 chipset, the address range from B000-B7FF must be EXCLUDEd on
the QEMM386.SYS line.
Example:

DEVICE=C:\QEMM\QEMM386.SYS ST:M RAM X=B000-B7FF

ZENITH PC's
With some versions of DOS, you need the parameter XSTI=18 in    order to print on a Zenith
system when StealthROM is enabled.    You will also need a small 4K exclusion somewhere in
the F000-FFFF    range. X=F500-F5FF works on some systems.

SOFTWARE

MISCELLANEOUS DRIVERS
QEMM's installation program adds several drivers by default to the OPTIMIZE.NOT file. This is
because, for one reason or another, these drivers may not be loaded high, or may interfere
with the running of OPTIMIZE. If you feel that your version of a given driver may load high
successfully, even though it appears by default in OPTIMIZE.NOT, remove the line referring
to your driver with an ASCII editor, or with a word processor in DOS Text mode.

The following programs are currently added to OPTIMIZE.NOT: CNFIGNAM, DPMS, MTDDRV,
MINI406A, CASCMOD1, PCNTNW, MEMDRV, AUTODRV.

1DIR PLUS
Some versions of this program need the QEMM parameter UFP:N when    Stealth is in effect if
1DIR Plus is using EMS. Another solution    is to configure 1DIR Plus so that it does not put its
stacks in    the EMS page frame. (See the 1DIR Plus manual for details.)

ALLCLEAR
This charting software may need an exclusion in the C000-C7FF    region if you use its View
Chart or Print Preview options with    StealthROM.

AVERY LABEL PRO

Some versions of this software may put display characters    incorrectly on the screen when
the StealthROM feature is enabled    unless you use the X=F000-F0FF parameter.

BOOTCON
Bootcon (version 2.02) is a utility that allows a user to boot    different configurations without
having to constantly edit config    files.

Bootcon is compatible with QEMM's Optimize program, but you must    run Bootcon in
STANDALONE mode to achieve this. This mode    disables the MENU mode and boots the
system with a single or flat    configuration. Each configuration that is to be Optimized has to 
be booted as a Standalone.

To change the Bootcon program from Menu to Standalone, run the    BCSETUP program, go to
the Main Menu, and select SET MODE from the    menu.

After the completion of all Optimizes, one may go back to MENU    mode so that each time
the system boots, one may select a    configuration from the menu. The MENU mode is more
akin to the    DOS 6 multi-config setup.

BTRIEVE DATABASE PROGRAMS
Including DAC EASY, CLARION, AND pcANYWHERE
Btrieve is a database record manager sold by Novell and used by    many applications to
perform database activities. Btrieve is    usually run before these applications as a TSR. It
uses expanded    memory, unless you prevent it from doing so by giving it the /E    parameter
(the E must be uppercased). Quarterdeck has seen many    cases in which systems did not
function properly unless Btrieve    was stopped from using expanded memory with the /E
parameter.

Among the applications that have used Btrieve in at least some of    their versions are DAC
Easy, Clarion, and pcANYWHERE.

- We have reports that DAC Easy versions 4 and 5 will fail when    used with QEMM's D*Space
feature unless Btrieve is using the /E    parameter. In DAC Easy 5, the symptom is often a
DoubleGuard alarm    error when DAC Easy starts. DAC Easy loads Btrieve from a batch    file
called DEA4.BAT or DEA5.BAT; if this batch file does not    already specify the /E parameter
on its Btrieve line, you should    place it there.

- Clarion 3 (and perhaps other versions) loads Btrieve from a    batch file called CDD.BAT. If
this batch file does not already    specify the /E parameter on its Btrieve line, you should
place it    there to prevent failures when using Clarion with one of QEMM's    Stealth features.

- pcANYWHERE 4 (and perhaps other versions) loads Btrieve    automatically with its AWHOST
program. To make sure that Btrieve    does not use expanded memory, you must load Btrieve
with the /E    parameter, either manually or from a batch file, before loading    AWHOST.
AWHOST will see that Btrieve is already loaded and will    use the already-active copy in
memory.

CACHE86 (FROM THE ALDRIDGE COMPANY)
When using Cache 86's expanded memory cache with Stealth DoubleSpace, you must
specify the EXPCACHE parameter to the ST-DSPC driver in CONFIG.SYS.    Example:

DEVICE=C:\QEMM\ST-DSPC.SYS /EXPCACHE:4

Cache86, when using EMS, is also incompatible with OPTIMIZE's SqueezeTemp feature.    The
alternatives are to ensure that Cache86 is not using expanded memory, or to start OPTIMIZE

with the /NT parameter:

OPTIMIZE /NT

CENTRAL POINT ANTI-VIRUS
As of this writing, it may be the case that a hang or a reboot will occur when Central Point
Anti-Virus is used with QEMM and Windows for WorkGroups 3.11, and when a floppy or
netword drive is scanned.    Symantec (publishers of CPAV) and Quarterdeck are working co-
operatively to resolve this problem.    More up-to-date information may be available via the
online support forums for both companies.

DELRINA DOSFAX
Delrina's DOSFAX program requires that you place the parameter    X=B000-B0FF on the
QEMM386.SYS line in your CONFIG.SYS file.    Without this parameter, DOSFAX may fail after
it captures a    document to print.

GEOWORKS ENSEMBLE
As of version 1.2, Geoworks is incompatible with QEMM's Stealth    ROM feature if Geoworks
Ensemble is set up to use expanded (EMS)    memory. If you set up Geoworks Ensemble to
use extended (XMS)    and conventional memory, it will work with StealthROM. See the   
accompanying documentation for details on configuring Geoworks    to use XMS and
conventional memory. (As of this writing, the    recently released GEOWORKS v2.0 has not
been tested to determine    whether this information applies to that version, as well.)

GLYPHIX
Some versions of the font program Glyphix need the QEMM parameter    UFP:N when Stealth
is in effect if Glyphix is using EMS.

IBM PC-DOS 6.1
A quirk in PC-DOS 6.1's handling of CALLed batch files can cause problems for OPTIMIZE.    In
a CALLed batch file in most versions of DOS, a GOTO <label> statement for which there is
no valid destination <label> will cause the current batch file to terminate, and to return
control to the batch file that CALLed it. In PC-DOS 6.1, a GOTO <label> statement will cause
ALL batch files to terminate if there is no valid <label>.    This will cause the OPTIMIZE
process to terminate abnormally.    There are two workarounds.    One is to ensure that all
GOTO statements point to valid desinations; the other is to upgrade your version of PC-DOS
to any later version, including 6.3 and 7.0.

It is possible that installing from inside Microsoft Windows, and then choosing to run
OPTIMIZE from QSetup in Windows may cause the message "invalid COMMAND.COM, system
halted".    In this case, reboot your system, verify that all GOTOs have valid destinations, and
run OPTIMIZE from DOS.

INFINITE DISK
The QEMM directory (and especially any DOS device drivers or Windows .VxDs within it)
should not be compressed by Infinite Disk, since the drivers might be required at boot time
or during the OPTIMIZE process before the Infinite Disk software loads. Make sure that the
files in the QEMM directory are uncompressed,
and then type the command   

C:\INFINITE\PROTECT C:\QEMM*.* /P

to protect the files from being compressed.

LANTASTIC 6.0
Two of the network drivers that ship with LANtastic 6.0,    SERVER.EXE and REDIR.EXE, load
into memory in such a way that    QEMM's Optimize program assumes that they are larger
than they in    fact are. As a result, Optimize usually loads these programs low.

If your copy of LANtastic 6.0 contains versions of SERVER and    REDIR that accept the
/LOAD_HIGH parameter, you should specify    this parameter to both LANtastic drivers. You
should also make    sure that the DOS=UMB or DOS=HIGH,UMB statement is in your   
CONFIG.SYS file; LANtastic requires the DOS=UMB interface    (available in DOS 5 and later
versions) in order to use upper    memory. The /LOAD_HIGH parameter and DOS=UMB will
allow Optimize    to load SERVER and REDIR high if there is enough room for them in    upper
memory.

If your versions of SERVER and REDIR do not accept the /LOAD_HIGH    parameter, you can
still attempt to load them high by performing    the following steps, although you will need
more available High    RAM than you would with the /LOAD_HIGH versions of the drivers:

1. For the best changes of loading the drivers high, reorder your    AUTOEXEC.BAT file
if necessary so that as many TSRs as possible are    loaded after SERVER and REDIR.

2. Start Optimize and select Custom Optimize from the first    Optimize screen.

3. Proceed with Optimize until you reach the Analysis Phase. When    the Analysis
Phase is complete, select O for Options on the    Analysis Phase screen.

4. Select option 2 to modify the data used by the Optimize    process.

5. Find SERVER and REDIR on the list of programs, use the arrow    keys to go to the
"Try to Load High?" field for these programs,    and set the field to Y for both
programs. Hit Enter to save    each change.

6. Use the arrow keys to go to the Initial Size fields for the two    programs. Enter
122880 in the Initial Size field for SERVER,    and 61440 in the Initial Size field for
REDIR. Hit Enter to    save each change.

7. Hit Enter again. After Optimize recalculates, continue as    usual with the Optimize
process.

LOTUS 1-2-3
If you are using QEMM's VIDRAM feature, Lotus 1-2-3 may report    that "123 cannot start
because the driver set is invalid."    VIDRAM works with DOS text-based programs, but does
not allow EGA    or VGA graphics. 1-2-3 is checking your graphics card's    capabilities and
VIDRAM is telling it that no graphics are    allowed. The solution is to run 1-2-3's INSTALL
program and make    a driver set with no graphics entry. Use 1-2-3 INSTALL's    "Advanced
Options" and "Modify Current Driver Set" selections.    Then select the "Graph Display" item.
Press the Del key on the    driver that is currently selected. Then press the "Esc" key and   
use "Save Changes" to save the driver set with a different name    (we suggest 123VID.)
Then when you want to use 1-2-3 with VIDRAM,    type 123 123VID at the DOS prompt and
the correct video driver    will be used.

DESQview users may want to install a second version of 1-2-3 on    the DESQview menu. The
second version would include 123VID as a    command line parameter to the 123 command.

LOGITECH MOUSE DRIVERS (LVESA.OVL)
Some versions of Logitech MOUSE.COM drivers load an overlay file    (LVESA.OVL) that

Optimize does not detect, and consequently the driver    does not load high. A message
appears saying "Insufficient Memory To    Load Video Module" or "Error: Not enough memory
to load Video Module"    when LOADHI attempts to load the mouse driver high. Updated
mouse    drivers that do not exhibit this problem are available from Logitech.    Alternatively,
you may choose to remove the line

VideoModule=LVESA.OVL

from the LMOUSE.INI file, or use the NOVCI switch to the Logitech    mouse driver.

MIRROR
MIRROR is written by Central Point Software and packaged with MS-    and IBM-DOS version 5
and 6. MIRROR is used to recover deleted    files. MIRROR first makes a backup copy of the
your FATs (File    Allocation Tables), then loads a resident portion of itself that    tracks files as
they are deleted in order to expedite their    recovery. The file tracking feature is enabled by
using the "/Tx"    switch (where "x" is the letter of the drive to be monitored) to    the MIRROR
command line.

The copy of the FAT(s) that MIRROR makes may be too large to    load into available High
RAM. (This data cannot be spread over    multiple High RAM regions.) If this happens when
MIRROR loads,    it will report that it has failed to perform this function.    However, the
undelete tracking feature may have installed    successfully. Type LOADHI at the DOS prompt
to make sure that    MIRROR loaded successfully.

If there is insufficient High RAM to perform the first function    of MIRROR above 640K, but
there is enough High RAM to perform    MIRROR's second function (the resident portion of
MIRROR    requires only 6.4K of memory), you may load MIRROR low once    without the "/Tx"
switch (to perform MIRROR's first function.)    Then load MIRROR high with the "/Tx" switch in
order to load its    resident portion above 640K and make a successful copy of the    FAT.

NORTON ANTI-VIRUS
Norton Anti-Virus version 2.00 is known to interfere with the    ability of LOADHI.COM to load
the command processor. Upgrade your    software to NAV 2.1 or higher.    In the interim, use
QSETUP to load the command processor low by choosing DOS-Up Options from the main
menu, and then Partial; on the following screen, set COMMAND.COM
to No.

NORTON BACKUP
If you frequently change your configuration from StealthROM    enabled to StealthROM
disabled, some versions of Norton Backup    may require that you exclude X=FE00-FFFF and
that you reconfigure    the backup program.

ORACLE AND VCPI
Oracle is a VCPI-compliant program, starting with version 2.1.34    of the SQLPME.EXE file.
You may want to contact Oracle to find    out the status of the VCPI support of your version. It
is also    important to choose the Oracle configuration option (machine    type J) that tells
Oracle that it is running on a VCPI system.

PCSA
PCSA's EMS loaders (DMNETHLD and EMSLOAD) do not work if Stealth    ROM is enabled. The
QEMM386.SYS parameter XST=F000 may solve the    problem when it occurs. Some DEPCA
cards may fail with the PCSA    software and ST:M unless you place the page frame at the
starting    address of the DEPCA's card's 16K ROM.

PRINTQ

You should use this print spooler's /LSX parameter to make it    use extended memory rather
than expanded memory if you are using    StealthROM.

REPEAT PERFORMANCE
Like other keyboard-enhancement programs that create a new type-    ahead buffer, the
Repeat Performance keyboard-enhancing program    malfunctions if loaded above 63K. As a
result, it cannot be    loaded high with all of its features enabled. However, RP.SYS    will load
high if you use its BUFFERS=OFF parameter, which    disables Repeat Performance's type-
ahead buffer.

SPACEMANAGER
If your are using SpaceManager's SuperMount feature, DOS 6.0 and    QEMM's StealthROM
feature, your PC may hang at bootup time. (If    you want to find out if you are using
SuperMount, look for the    SMOUNT or SMOUNT.EXE command in your AUTOEXEC.BAT file.)
To fix    the bootup problem, add the following parameter to the QEMM386.SYS    device line
in your CONFIG.SYS file: DBF=n (where n is a number; 1    and 2 are commonly-used values).
For information on the DBF    parameter, see DISKBUFFRAME in Chapter 7 of the QEMM
manual.

SIDEKICK PLUS
SideKick Plus will not work with StealthROM unless it is    prevented from using EMS. One
workaround is to use QEMM's EMS.COM    program to temporarily allocate all EMS before
SKPLUS is loaded,    then use EMS.COM again to free your machine's EMS memory after   
loading SKPLUS.

SUPER PC-KWIK
When Super PC-Kwik is using expanded memory and you are using    Stealth D*Space and do
not have StealthROM enabled, you must    use the Super PC-Kwik parameter,
EMSMapSaves=Always, which forces    Super PC-Kwik to make the necessary EMS calls to be
compatible    with Stealth D*Space.

TALKING ICONS (Aristosoft)
The Talking Icons FX function can cause video display refresh    problems when used with
QEMM and Windows. It is recommended that    the FX function not be used.

VENTURA PUBLISHER PROFESSIONAL
When QEMM's StealthROM feature is enabled and you have the line    STACKS=0,0 in your
CONFIG.SYS file, Ventura Professional Version 2    will not operate properly. Removing the
STACKS=0,0 statement    should solve the problem. DR DOS 6 does not use hardware   
interrupt stacks; as a result, you cannot use DR DOS 6 with    Ventura Professional 2 if you
are using StealthROM. Ventura    Professional Version 3 does not put its stacks in the EMS
page    frame and works properly with StealthROM.

Ventura Publisher 2 will not work properly if the EMS page frame    is located at an address
higher than E000. To find out where    your page frame is located, type QEMM at the DOS
prompt. If you    are using a page frame, you will see its address listed. If the    address is
higher than E000, type QEMM again and look at the list    of areas and sizes. Find the first
High RAM area below E000 that    is at least 64K in size and jot down its starting address,
then    add the FRAME=xxxx parameter to the QEMM line, replacing xxxx    with the address
you wrote down (e.g., FRAME=D000).

VIDEO ACCELERATOR DRIVERS
Several video cards come with programs such as SPEED_UP.SYS,    RAMBIOS.SYS, or
FASTBIOS.SYS. These programs make a copy of the    video ROM in RAM in order to speed
up your video. If loaded after    QEMM on a system with StealthROM enabled, they may

refuse to    load, complaining that someone else has taken Interrupt 10. If    loaded before
QEMM on the same system, StealthROM will be    disabled because QEMM cannot find the
ROM handler for Interrupt    10.

You can solve both of these problems with XSTI=10. No exclusion    is necessary because the
video ROM is no longer being used.    Speed_up.sys can then be loaded after QEMM (and can
be loaded    into upper memory.) However, we strongly recommend that you NOT    load
SPEED_UP.SYS, RAMBIOS.SYS, FASTBIOS.SYS, or any similar    driver. Using SPEED-UP.SYS
costs you 36K of memory. Instead use    QEMM's ROM parameter, producing the SAME effect
but using NO    address space between 0-1024K.

VP PLANNER
Some versions of VP Planner spreadsheet need the parameter UFP:N    when Stealth is in
effect if VP Planner is using EMS.

XTRADRIVE
IIT's XTRADRIVE disk compression utility ships with a disk cache    that is not compatible with
QEMM's StealthROM feature. For    information on using XTRADRIVE with QEMM, read
XTRADRV.TEC.

Return to Technotes Main Menu.

QEMM Analysis Procedure:    Solving Memory Conflicts

Quarterdeck Technical Note #219

 Q. What is Analysis?

 A. Whenever QEMM is "on" it monitors the use of the first megabyte of address space. The
QEMM/ANALYSIS screen of Manifest shows what portions of the address space need to be
EXCLUDEd to avoid High RAM conflicts.

 Q. Why should I use Analysis?

 A. If you are getting an Exception #13, are unable to access your network when QEMM is
installed, cannot access a floppy, print, run some program, lock-up at some identifiable point
in operating your computer (from booting to running your word processor), or have some
other problem when running QEMM that you do not have when you do not run QEMM, then
the ANALYSIS procedure may be a useful diagnostic process.

 Q. Why is this necessary?

 A. This procedure is necessary sometimes because Adapter ROMs and Adapter RAMs do not
identify themselves in such a way as to be detected properly by QEMM. Adapter ROMs are
supposed to identify their length in the third byte of the ROM itself but sometimes report a
smaller size. Adapter RAMs that are not active at boot look exactly like unoccupied address
space. QEMM maps unused portions of the system BIOS ROM and will map over such
adapter ROMs and RAMs. Some special CGA video cards have two pages of video: one at
B800-BBFF, the second at BC00-BFFF. QEMM may map over the second page, causing a
conflict if you run a program that tries to use the second page. In rare circumstances there
are programs that use portions of the high address space directly.

 Q. How does Analysis work?

 A. The QEMM/ANALYSIS screen of Manifest is a cross-reference between the QEMM/TYPE
and QEMM/ACCESSED screens. The TYPE screen shows what QEMM thinks the address space
is used for: Video, ROM, Page frame, High RAM, etc. The ACCESSED screen shows whether
the address space has been accessed. When QEMM is neither accessing the high address
space (by creating High RAM -- when the RAM parameter is on the QEMM386.SYS line in
CONFIG.SYS), and when some portion of the address space is being accessed by something
that QEMM has not detected automatically, a portion of the address space must be
EXCLUDEd. Analysis displays the correct range to EXCLUDE.

 Q. How do I use ANALYSIS to find EXCLUDEs?

 A. First remove the RAM parameter from the QEMM386.SYS line of the CONFIG.SYS and add
the ON and MA=0 parameters. This is to make sure that QEMM386 is not itself a user of the
high address space, and that to ensure that QEMM on. Then reboot the machine and run the
software that was causing the problem. The problem should not recur; if it does, a High RAM
conflict is not the problem, and you should consult Quarterdeck Technical Note #241, QEMM
General Troubleshooting (TROUBLE.TEC). Without rebooting, look at the QEMM / ANALYSIS
screen in Manifest. If you see Xs, then these portions of the address space must be
EXCLUDEd on the QEMM386.SYS line of the CONFIG.SYS. See the QEMM manual section on
the syntax of the EXCLUDE parameter. If the QEMM is putting the page frame over a portion
of the address space that QEMM should not be mapping then it may be necessary to put the
parameter FR=NONE on the QEMM386.SYS line of the CONFIG.SYS during the ANALYSIS

process. Once you are done with the ANALYSIS process you can restore the RAM parameter
to the QEMM386.SYS line along with the appropriate EXCLUDEs.

 Q. How can Analysis fail?

 A. The only serious pitfall to the ANALYSIS process is that there are users of the high
address space that use the high address space only momentarily. There is, for example, a
Bernoulli drive that has an Adapter ROM in the high address space. At boot time, the device
driver for the Bernoulli Box searches for the ROM at the beginning of every 8K portion of the
address space beginning at C800. If the Adapter ROM is at DC00 then the device driver will
access every other 4k of the address space from C800 to DC00. This causes Xs to appear in
every other block in this area, even though the areas between C800-DBFF are only being
used during the searching process. Most of these areas need not be excluded. The range
from DC00-DEFF, where the Adapter ROM of the Bernoulli Box resides, mayy require an
EXCLUDE.

 When you go into enhanced mode of Microsoft's Windows then QEMM is not active and the
ANALYSIS process is not useful for the period of time that you are in enhanced mode.

 Q. What cost can there be in excluding an area?

 A. EXCLUDEing a portion of the address space will only cost you, at the worst, a bit of
usable high RAM. It will not make your system malfunction in any other way, and is likely to
improve stability.

 If you add an EXCLUDE you should run OPTIMIZE again because your available High RAM
regions have been resized and perhaps renumbered.

 Q. What about those green "I"s?

 A. The green I you see on the QEMM/ANALYSIS screen indicates that this portion of the
address space has not been accessed by anyone YET and QEMM is not mapping this portion
of the address space. It is quite possible that this portion of the address space will be
accessed later. (The portion of the system BIOS ROM that contains the code for controlling
the floppy drive may report that it is INCLUDable until you actually use the drive. If you
INCLUDE it you will have no problem until you access a floppy.) The QEMM manual discusses
the use of the ANALYSIS process for this purpose; this document does not.

 Q. How do I perform the Analysis procedure?

 A.    A thorough Analysis requires that you run all your programs. However, if a specific
program seems to be exhibiting a High RAM conflict, you need only do a mini-Analysis by
running the program that seems to be exhibiting the problem.    As an example, suppose that
you have installed an adapter card and software for a scanner. While the device driver for
the scanner loads in CONFIG.SYS, part of the hardware is not accessed until you scan a
document.    This causes a crash, since QEMM has mapped High RAM over the address space
that the adapter and the software expect to use.    (It is unlikely, incidentally, that
OPTIMIZE will fail to detect the card properly.)

To begin the ANALYSIS process, modify your QEMM386.SYS line to
look like this:

DEVICE=C:\QEMM\QEMM386.SYS ON MA=0

Reboot your machine.    In this example, we would access the hardware by scanning a

document.    After doing this, start Manifest by going to the DOS prompt and typing:

MFT

Select the QEMM / Type screen by typing Q, and then Y. Manifest will display a chart
something like the following:

Look at the Dn00 line.    This indicates that QEMM is identifying an Adapter ROM in D000-
D0FF.    Now select the QEMM / Accessed screen by pressing the C key.    Manifest will display
a screen that looks like this:

 Look at the Dn00 line: QEMM is detecting that D000-D3FF is actually being accessed, D000-
D1FF being written to and D200-D3FF only being read and is passing this information to
Manifest.    Now choose the QEMM / Analysis screen by pressing the N key:

Press the F3 key to display the information in List Mode. You will see a table that looks like
this:

 ANALYSIS is showing that D000-D3FF needs to be EXCLUDEd. This is the sort of address
range associated with a scanner card at D000. In the example above, QEMM accurately
identifies 4K adapter RAM on boot; in fact, the card has an unmarked RAM buffer as well.   
The ACCESSED map above shows that 16K is being accessed, and the ANALYSIS map is
pointing out that the additional 12K must be EXCLUDEd.    Note that unlike the display above,
there should be no spaces within the EXCLUDE parameter.    That is,

X=D100 - D3FF

is NOT a valid QEMM parameter, while

X=D100-D3FF

is valid.

Thus, a CONFIG.SYS line to account for the scanner, based on our mini-Analysis procedure,
would look like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM X=D100-D3FF

(Increasing the range of the EXCLUDE such that it covers D000-D3FF is not harmful in any
way.)

SUMMARY

 QEMM does its best to identify users of the high address space, but hardware not accessed
at boot time may not be detected by QEMM. ANALYSIS allows the user to find areas between

640K that are used by hardware.

Return to Technotes Main Menu.

QEMM Compatibility

The Compatibility page of QEMM Setup lets you review or change certain aspects of QEMM's
behavior that may affect QEMM's compatibility with your particular system or configuration.
When you select Compatibility by clicking on its tab you see a list of options. If you move the
mouse pointer to an option, you see a brief description of what that option does in the
Parameter Information area near the bottom of the window.
Each of the selections on this screen adds, deletes or modifies a parameter on the
QEMM386.SYS device line in CONFIG.SYS. You can see QEMM's device line above the list of
options. When you select an option, you will see how it modifies the device line. You can
even edit the device line--just click at the point you want to edit.
IMPORTANT: Once you enable or disable any of the compatibility options, the change will

not take effect until you reboot your PC.

Remove or Set Page Frame Address

Find ROM Holes

Exclude Stealthing a Particular ROM

Reclaim Top Memory

Enable Suspend/Resume Laptop

Relocate Extended BIOS Data Area

Setup QEMM for Troubleshooting

QEMM Installation:    How it Modifies Your System

Quarterdeck Technical Note #297

When you install QEMM, the Install and Optimize procedures make changes to your CONFIG.SYS and
AUTOEXEC.BAT files, and to any other batch file called by your AUTOEXEC.BAT file. The installation
process also modifies your WIN.INI and SYSTEM.INI files to enable the Windows features in QEMM 8.0
and later. This technote is for those who want to know exactly what these changes are.

In this document, "Windows 3.1" refers to Microsoft Windows 3.10, 3.11, and Windows for
WorkGroups; "Windows 95" refers to Microsoft Windows 95; "Windows" refers to both
versions.

In some of the sample lines below, you will see the parameter /R:n which is used to load an item into a
specified High RAM region. On your system, the n is replaced by a number indicating the region. You will
also see the parameter /SIZE=n, where n is the number of bytes of memory the item needs to initialize.

Changes for All Systems

QEMM's INSTALL and OPTIMIZE programs make the following changesto your CONFIG.SYS file:

If you are using QEMM's DOS-Up feature, the following line is added at the beginning of CONFIG.SYS to
prepare your system for parts of DOS to be loaded into upper memory:

DEVICE=C:\QEMM\DOSDATA.SYS

The following line is also added to CONFIG.SYS:

DEVICE=\QEMM\QEMM386.SYS RAM R:n

This is QEMM's device driver line; it is the line that loads QEMM whenever you boot your PC. Depending
on your configuration, you may see additional parameters (e.g., ST:M or ST:F for StealthROM). For
information on QEMM's parameters, see your QEMM manual.

If you are using DOS-Up, the following line, which loads the various parts of DOS into upper memory,
appears directly after your QEMM386.SYS line:

DEVICE=C:\QEMM\DOS-UP.SYS

The INSTALL program also adds the following command (all on one line) to load QEMM's DPMI driver,
which supports programs that use the DOS Protected Mode Interface:

DEVICE=C:\QEMM\LOADHI.SYS /R:n /SIZE=n C:\QEMM\QDPMI.SYS SWAPFILE=DPMI.SWP
SWAPSIZE=1024

(Note that the above should be a single line in your CONFIG.SYS file.)

The following syntax is added to the beginning of other device driver lines in CONFIG.SYS:

DEVICE=C:\QEMM\LOADHI.SYS /R:n

This command tells QEMM to load the device driver directly following this command into High RAM. (If
Optimize has determined that a particular driver will not fit into upper memory, this syntax will not be

added to that driver's line.) For example, if, before installing QEMM, your CONFIG.SYS file contained the
following line:

DEVICE=C:\DOS\ANSI.SYS

Optimize would change it to read as follows:

DEVICE=C:\QEMM\LOADHI.SYS /R:n SIZE=n C:\DOS\ANSI.SYS

If you are using DOS-Up, Optimize will add QEMM's LOADHI command to your SHELL line to load your
command processor high (if you do not have a SHELL line, Optimize will add one for you). For example, if
you have the following line in your CONFIG.SYS file:

SHELL=C:\DOS\COMMAND.COM C:\DOS\ /P

Optimize will change it to read as follows, all on one line:

SHELL=C:\QEMM\LOADHI.COM /R:n C:\DOS\COMMAND.COM /P

If you are using DOS version 5 or 6, QEMM's installation will add the following line to your CONFIG.SYS
file if it is not already there:

DOS=HIGH

This is a DOS command that loads part of DOS's kernel and DOS buffers into the HMA, the first 64K of
extended memory. If QEMM's installation detects DESQview or DESQview/X on your system and there is
no DOS=HIGH statement in CONFIG.SYS, this statement will not be added. By omitting DOS=HIGH,
DESQview or DESQview/X can use the HMA to load part of its own code.

If you are using MS-DOS 6's DoubleSpace disk compressor, QEMM'sinstallation will add the following line
to enable the StealthD*Space feature:

DEVICE=C:\QEMM\LOADHI.SYS r:n SIZE=n C:\QEMM\ST-DSPC.SYS

As mentioned earlier in this technote, QEMM's installation will remove device driver lines for other
memory managers from CONFIG.SYS.

Optimize makes the following changes to AUTOEXEC.BAT and to any batch file called by
AUTOEXEC.BAT:

QEMM's directory is added to your PATH statement.

The following syntax is added to the beginning of lines that load TSRs (i.e., memory-resident
programs) high:

C:\QEMM\LOADHI /R:n

This command tells QEMM to load the TSR directly following this command into High RAM. For
example, if, before installing QEMM, your AUTOEXEC.BAT file contained the line:

C:\NET\NETX.COM

Optimize would change it to read as follows:

C:\QEMM\LOADHI /R:n SIZE=n C:\NET\NETX.COM

Changes for Microsoft Windows

If you are using Microsoft Windows, QEMM adds the line

SystemROMBreakPoint=False

to the [386Enh] section of Windows' SYSTEM.INI file to make Windows run optimally with QEMM.

If you are using FreeMeg in Windows 3.1, FREEMEG.DLL will be added to the drivers= line in
the [boot] section of the Windows SYSTEM.INI file.

If you are using Resource Manager in Windows 3.1, RSRCMGR.DLL will be added to the
drivers= line in the [boot] section of the Windows SYSTEM.INI file.

If you are using MagnaRAM in Windows 3.1, the program LOGO31.EXE will be added to the
Run= line in the WIN.INI file. The line

 DEVICE=<QEMM path>\MAGNA31.VXD

will be added to the [386Enh] section of the SYSTEM.INI file, and a [Quarterdeck_MagnaRAM]
section will be created.    Within this new section, the lines

 [Quarterdeck_MagnaRAM]
 COMPRESSION=ON
 COMPRESSION_BUFFER_SIZE=
 COMPRESSION_THRESHOLD=0

will be created with values reflecting MagnaRAM's defaults or the settings that you chose via
the QEMM Setup program.

If you are using MagnaRAM in Windows 95, configuration information will be stored in the
Windows Registry.    In the section

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\...Quarterdeck_MagnaRAM

the following values will be added:

COMPRESSION=ON
COMPRESSION_BUFFER_SIZE=""
COMPRESSION_THRESHOLD=""

Again, the actual values associated with each key will vary depending on your choice of
configuration.

Return to Technotes Main Menu.

QEMM:    Running Optimize with a Windows 95 Multiple Configuration
Startup Menu

Quarterdeck Technical Note #312

If you installed Windows 95 over an older version of DOS, you may have a multiple
configuration STARTUP MENU that displays when you boot your system.    The Startup Menu
lets you pick the configuration you want to use during bootup.    You might, for example,
have installed Windows 95 into a new directory rather than installing over Windows 3.1.    At
times, you may want to boot into Windows 3.1 instead of Windows 95.

If you use a WINDOWS 95 Startup menu, you must make sure that QEMM's OPTIMIZE boots
into the same configuration choice each time it reboots your system.    In this technote we
tell you how to create a multiple configuration WINDOWS 95 Startup Menu and how to run
Optimize when using such a menu.

1.      Boot your computer and watch for the message "Starting Windows 95".    When you see
this message, press the F8 key QUICKLY.    If one of the choices is "Previous Version of
DOS", note the number of that choice and write it down. Choose NORMAL and boot to
WINDOWS 95.

2.    When WINDOWS 95 has booted up, choose "Shutdown" from the Start Menu, and then
choose "Restart to DOS".

3.      Make sure you are in the WINDOWS 95 version of DOS by typing:

VER <enter>

If you see "Windows 95" on your screen, continue with Step 4.    If you do not see the
"Windows 95" message, boot to WINDOWS 95 or see your WINDOWS 95 documentation.   
DO NOT CONTINUE with this technote.

4.      In order to enable the Windows 95 Boot Menu feature, you must make modifications to
Windows 95's MSDOS.SYS configuration file.    Type the following:

cd\ <enter>
attrib -s -h -r msdos.sys <enter>
copy msdos.sys msdos.qdk
edit msdos.sys <enter>

5.        Add the following to the [Options] section:

BootMulti=1                                    ;Win95 Multi-Boot Configuration enabled
BootMenu=1                                  ;Win95 Multi-Boot Menu displayed by default
BootMenuDelay=5              ;Seconds to delay menu selection
BootMenuDefault=x          ;Boots to item number x after the boot menu delay

Note:    
If you did not make a note of the menu number for "Previous    Version of DOS", do not add
the BootMenuDefault= line.    Instead, press the keys <ALT-F> <X> <Y> to save the file,
then reboot the computer.    When the Startup Menu displays, make note of the menu
number for "Previous Version of DOS",    then boot to the "Command Prompt Only"

selection. Edit MSDOS.SYS again, and add the BootMenuDefault= line.    Press    the keys
<ALT-F> <X> <Y> to save the file.

6.      Type:

attrib +s +h +r msdos.sys <enter>

7. Re-boot your system. (If you end up in Windows 95, select "Shut Down" from the Start
menu, then select "Restart in MS DOS mode".)    Then type:

C:\QEMM\OPTIMIZE <enter>

      to OPTIMIZE your previous version of DOS.

8. If you want to boot to WINDOWS 95 by default, follow these steps.    (If you do not, you are
finished with this technote.)

      Re-boot and choose NORMAL (choice 1) on the Startup Menu.

      When WINDOWS 95 appears, choose "Shut Down" from the Startup Menu, then choose
"Restart to DOS".

      Type the following:

CD\ <enter>
ATTRIB -S -H -R MSDOS.SYS <enter>
EDIT MSDOS.SYS <enter>

 Place a semi-colon (;) before BootMenuDefault in the MSDOS.SYS file.

 Press the keys <ALT-F> <X> <Y> one after the other to return to a DOS prompt, then type:

 ATTRIB +S +H +R MSDOS.SYS <enter>

Now, when you boot your system the Startup Menu will be displayed for 5 seconds and then
WINDOWS 95 will automatically start.

Return to Technotes Main Menu.

QEMM Programming Interface (QPI)

The QEMM Programming Interface (QPI) lets programs request    information or services from
QEMM. Programs can use the QPI to do    the following:

Determine QEMM's status, and change that status if the system    configuration
allows.
Determine QEMM's version number.
Determine whether QEMM's StealthROM feature is active, and if so    what StealthROM
mode is in use.
Determine the number of ROMs that QEMM is Stealthing and the    beginning segment
address and length of each ROM.
Determine whether QEMM is supporting the system's Suspend/Resume    features,
and if so what interrupt these features are using.
Determine whether QEMM is allowing or suppressing the BIOS calls    that make it
possible to do work while waiting for disk activity    to complete, and tell QEMM to
allow or suppress these calls if the    system configuration allows.
Copy all or part of the contents of a Stealthed ROM into a buffer.
Determine the physical memory mapped to any linear memory address,and change
the page table so that any page of physical memory is    mapped to any linear
memory address.
Read or write I/O ports, even if QEMM is trapping access to those    ports.
Determine whether QEMM is trapping access to I/O ports, and tell    QEMM to trap
access to ports on the calling program's behalf.
Install a software routine that performs whatever actions the    program requires when
a given I/O port is accessed.
Simulate a hardware interrupt in such a way that it goes to the    correct DESQview or
DESQview/X window.

You can find sample QPI code and programs on the Quarterdeck    bulletin board and other
electronic support locations.

Getting the QPI Entry Point

The first step in using the QPI is getting the double-word address    of the QPI entry point.

The method of obtaining the entry point address that is described    here is available only in
versions of QEMM higher than 6.00.    Programs that want to run with QEMM 5 must use a
less    straightforward INT 2F interface to get the QPI entry point; for    more information,
contact Quarterdeck via Compuserve (GO    QUARTERDECK), the Internet
(support@qdeck.com) or our BBS and ask    for the QDMEM interface document.

QEMM defines a DOS device driver called QEMM386$. To obtain the    entry point for QPI, do
an IOCTL Read Control String call (INT 21,    function 4402h) to read four bytes from this
device driver. Here    is a code sequence that demonstrates the details:

QEMMDeviceName    db 'QEMM386$',0
QPIEntryPoint      dd ?

    GetQPIEntryPoint proc
            mov      dx,offset QEMMDeviceName
            mov      ax,3d00h
            int      21h  ; Try to open QEMM386$

            jc        NoQEMM                                      ; If CY, QEMM not present
            mov      bx,ax  ; Save file handle in BX
            mov      dx,offset QPIEntryPoint    ; Store the entry point here
            mov      cx,4  ; Set up to read 4 bytes
            mov      ax,4402h                                  ; IOCTL Read Control String
            int      21h
            pushf  ; Save the error code
            mov      ah,3eh                                      ; Close the handle
            int      21h
            popf  ; Restore the error code
            jc        NoQEMM                                      ; If CY, QEMM is pre-6.00
            ret
    NoQEMM: stc
            ret
    GetQPIEntryPoint endp

QPI Functions

Once you have stored the address of the QPI entry point, you make    all calls to QPI by
loading AH or AX with the function number of    the call, setting the other registers to values
appropriate to the    function, and making a far call to the entry point. The carry flag    is set
on return if there is an error, or if the function number    is not valid in that version of QEMM.

 The QPI calls of interest to third-party programmers are listed    below. The version in which
each of the calls was implemented is    noted.

 The QPI_GetStatus Call

 The QPI_GetStatus call tells you whether QEMM is on or off, and    whether it is in auto mode
(see the AUTO/ON/OFF parameter in    Chapter 7 in the QEMM Reference Manual for more
information). All    versions of QEMM support this call.

    QPI_GetStatus                EQU          0
              ; Takes                AH = 0
              ; Returns            AL = 0 if on
              ;                            AL = 1 if auto/on
              ;                            AL = 2 if off
              ;                            AL = 3 if auto/off

The QPI_SetStatus Call

The QPI_SetStatus call lets you set the status of QEMM.    If QEMM is forced on by a
parameter (like the RAM parameter) or other services that it provides, this call will have no
effect.    You should therefore make the QPI_GetStatus call after the QPI_SetStatus call to see
if the first call was successful.    All versions of QEMM support this call.

    QPI_SetStatus                EQU          1
                  ; Takes            AH = 1
                  ;                        AL = 0 if on
                  ;                        AL = 1 if auto/on
                  ;                        AL = 2 if off
                  ;                        AL = 3 if auto/off

The QPI_GetVersion Call

The QPI_GetVersion call returns the QEMM version number in Binary Coded Decimal form in
AX and BX. For instance, the call will return BX = 0750 (not BX = 0732) for QEMM version
7.5. All versions of QEMM support this call.

    QPI_GetVersion              EQU          3
                  ; Takes            AH = 3
                  ; Returns        BH = major version (in Binary Coded Decimal)
                  ;                        BL = minor version (in Binary Coded Decimal)
                  ;                        AX = same as BX

The QPI_GetInfo Call

In QEMM version 6.00 and later, the QPI_GetInfo call returns an ASCII letter in CL that tells
QEMM's StealthROM mode (if any), and a number in CH that tells which interrupt (not IRQ)
QEMM is monitoring (if any) to support Suspend/Resume features. In QEMM version 7.00 and
later, the call also returns the size of QEMM's disk buffer in DL and a bit map of information
about the disk buffer in BH.    Bit 1 of BH will be on if the disk buffer has already been used;
bit 0 will be on if QEMM is buffering only INT 13s into the page frame (DISKBUFFRAME) and
off if all INT 13s into nonlinear memory are being buffered (DISKBUF). Note that other
registers are not preserved by this call.

    QPI_GetInfo                    EQU          1E00h
                  ; Takes            AX = 1E00
                  ; Returns        BH = xxxxxxAB
                  ;                                where A = 1 if disk buffer has been used
                  ;  yet, 0 if not
                  ;  B = 1 if DISKBUFFRAME buffer, 0 if
                  ;  DISKBUF buffer - not valid if
                  ;  DL = 0
                  ;                        BL = reserved
                  ;                        CL = StealthROM type (0 for no StealthROM,
                  ;  "M" or "F" otherwise,
                  ;  other StealthROM
                  ;  types possible 
                  ;  in future)
                  ;
                  ;                        CH = Suspend/Resume INT number (0 = none)
                  ;                        DL = size of QEMM disk buffer in K
                  ;                                (if 0, disk buffer doesn't exist)
                  ;                        DH, DI, SI = reserved
                  ;

    The QPI_GetStealthCount Call

    The QPI_GetStealthCount tells how many ROMs QEMM is Stealthing.
    QEMM versions 6.00 and later support this call.

    QPI_GetStealthCount equ    1E01h
                  ; Takes          AX = 1E01
                  ; Returns      BX = number of ROMs that are Stealthed

    The QPI_GetStealthList Call

    The QPI_GetStealthList call gives the same information as the
    QPI_GetStealthCount call, and also fills a buffer with information
    on the location and size of each Stealthed ROM. QEMM versions 6.00
    and later support this call.

    QPI_GetStealthList    equ 1E02h
                  ; Takes        AX = 1E02
                  ;                    ES:DI= buffer to hold the list of Stealthed
                  ;                                  ROMs
                  ; Returns    BX = number of ROMs that are Stealthed
                  ;                    Table at ES:DI will be filled in with:
                  ;                            dw ROM start segment
                  ;                            dw Length of ROM in paragraphs
                  ;                    for each ROM that is Stealthed

    The QPI_GetPTE Call

The QPI_GetPTE call returns the page table entry for any logical page in the first 1088K of
memory. In other words, if you pass this call the address of any page in the first 1088K of
memory, the call will return (in an extended register) the doubleword page table entry for
that address, which includes, among other things, information about which physical page of
memory QEMM has mapped to the logical address that you provided.    QEMM versions 6.00
and later support this call.

CX should contain the number of the logical page in memory that you want to affect; the
highest valid CX is 010F. (Page numbers refer to consecutive 4K sections of memory, aligned
on 4K boundaries: that is, 0000 refers to paragraph 0000-00FF, 0001 to 0100-01FF, etc.)
EDX (the extended DX register) should contain a page table entry, in the following format:

Bit 0 is the Present bit. Any access to a page with this bit off causes a page fault.

Bit 1 is the Read/Write bit. Any writing to a page with this bit off causes a page fault.

Bit 2 is the User/Supervisor bit. Any access to this page when the processor is at privilege
level 3 causes a page fault.

Bits 3 and 4 must be 0.

Bit 5 is the Accessed bit. Any read or write of the page causes the processor to turn on this
bit.

Bit 6 is the Dirty bit. Any write to the page causes the processor to turn on this bit.

Bits 7 and 8 must be 0.

Bits 9, 10, and 11 are available for systems programmer use.

Bits 12 through 31 are the page number.

For instance, a page table entry 000FF007 means physical page number 000FF (paragraph
FF00-FFFF), which is not yet accessed nor dirty, but which is present, writable and user-
accessible.

    QPI_GetPTE                    equ 1F00h
                  ; Takes          AX = 1F00
                  ;                      CX = page number
                  ; Returns      EDX = page table entry for that page number

    The QPI_SetPTE Call

The QPI_SetPTE call lets you set the page table entry for any logical page in the first 1088K
of memory. In particular, this means that you can tell QEMM to map any 4K of memory to
any 4K-aligned address below the 1088K mark. QEMM versions 6.00 and later support this
call. See the section above on the QPI_GetPTE call for more information.

    QPI_SetPTE                    equ          1F01h
                  ; Takes      AX = 1F01
                  ;                  CX = page number
                  ;                  EDX = page table entry to set at that page
                  ;                              number

The QPI_GetVHIInfo Call

The QPI_GetVHIInfo call, in conjunction with the QPI_SetVHIInfo call, is primarily used by disk
cache developers who wish to get information on QEMM's safety precaution of suppressing
the BIOS INT 15 function 90 callout. This safety precaution, known as VirtualHDIRQ or VHI
(see the section on the VIRTUALHDIRQ:N parameter in Chapter 7 in the QEMM Reference
Manual for more information), is normally in effect only when the disk interrupt INT 13 is
being Stealthed. If you have verified that the use of INT 15 fn 90 in the disk cache you are
developing is compatible with QEMM's StealthROM feature, you will want to tell QEMM to
allow INT 15 function 90.

The call returns flags in BL that give the VHI state. Bit 7 will be on whenever QEMM is
Stealthing INT 13 (if INT 13 is not Stealthed, QEMM never suppresses INT 15 function 90); bit
0 will be on if QEMM is currently suppressing INT 15 function 90. Bits 1-6 of the VHI bit map
are reserved. QEMM versions 6.00 and later support this call.

    QPI_GetVHIInfo            equ          2000h
                  ; Takes          AX = 2000
                  ; Returns      BL = AxxxxxxB
                  ;                      where A = 1 if VHI is being paid attention to
                  ;                                  B = 1 if VHI is currently enabled
                  ;                      (i.e. INT 15 fn 90 is currently suppressed)
                  ;                              x = reserved

The QPI_SetVHIInfo Call

The QPI_SetVHIInfo call lets you turn on or off QEMM's safety precaution of suppressing INT
15 function 90 whenever the disk interrupt INT 13 is being Stealthed. (See the section above
on the QPI_GetVHIInfo call for more information.) To request a VHI state, set BL to 1 to
suppress INT 15 function 90, or set BL to 0 to allow INT 15 fn 90. QEMM will return the
previous VHI flags in BL. If bit 7 of the returned flags is off, then QEMM is not paying
attention to the VHI state, and your request did not have an effect. QEMM versions 6.00 and
later support this call.

    QPI_SetVHIInfo            equ          2001h
                  ; Takes          AX = 2001
                  ;                      BL = xxxxxxxB that you want (bit 7 is ignored)
                  ; Returns      BL = AxxxxxxB of previous VHI state;
                  ;                      if A of output = 0, B of input was ignored

The QPI_CopyStealthRoms Call

The QPI_CopyStealthRoms call tells QEMM to copy the contents of part or all of a Stealthed
ROM into a buffer in conventional memory.    This is the only reliable to access the contents
of a Stealthed ROM.    QEMM versions 6.00 and later support this call.

    QPI_CopyStealthRoms    equ          2100h
                  ; Takes          AX = 2100
                  ;                      DS:SI = Original address of ROM to copy
                  ;                      ES:DI = Destination address
                  ;                                      in conventional memory
                  ;                      ECX = # of bytes to copy
                  ; Returns      CY if no stealth or if DS:SI
                  ;                                      not within C000-FFFF

I/O Trapping

The following calls make up the Quarterdeck QEMM I/O Trapping Programming Interface. This
interface allows a real-mode program to specify I/O ports that QEMM should trap access to,
as well as I/O callback routines that QEMM will call whenever one of these I/O ports is
accessed. Using this interface, you can emulate hardware devices that are accessible via I/O
ports.

When QEMM traps an I/O port, all accesses of that port, whether input or output, are
intercepted by QEMM.    (QEMM traps certain I/O ports itself, for proper management of
virtual-8086 mode.) Whenever an I/O port that a program has asked QEMM to trap is
accessed, QEMM calls a real-mode I/O callback routine.    The same callback routine is called
for all trapped I/O ports.

A program that wishes to trap an I/O port should:

1) Use the QPI_GetVersion call to make sure that the version of QEMM is 7.03 or later. Earlier
versions do not support most of the I/O Trapping Programming Interface. Alternatively, if the
version of QEMM does not support the call you have made, the call will return with the carry
flag set;

2) Issue a QPI_GetPortTrap call to determine that another program is not already trapping
the port. If another program is trapping the port, it is generally advisable not to install your
port trap;

3) Get the address of the existing callback routine with the QPI_GetIOCallback call. Because
there is only one I/O callback routine, and because multiple programs may request I/O
trapping, your callback routine must jump to the previous callback routine whenever your
routine is not interested in the I/O port being accessed;

4) Install its own far routine as the new callback routine, using the QPI_SetIOCallback call.
Your callback routine will be passed the following information:

                  AX = Data for output
                  CX = Type of I/O (see flag bits defined below)
                  DX = Port number
                  IF = 0 (interrupts are disabled)

When the callback routine has finished its work, it should return far with all registers other
than CX and DX preserved. If the routine is called to get input from a port, AX should be
modified. The bit-mapped word in CX contains the following information:

    IOT_Output                    equ          0000000000000100b
                  ;                      bit 2 is 1 if output,
                  ;                      0 if input

    IOT_Word                        equ          0000000000001000b
                  ;                      bit 3 is 1 if word I/O,
                  ;                      0 if byte I/O

    IOT_IF                            equ          0000001000000000b
                  ;                      bit 9 is the same as the
                  ;                      caller's interrupt flag

5) Specify which port to trap with the QPI_SetPortTrap call.

If your program does not stay resident forever, it should do the following before exiting:

6) Use the QPI_GetIOCallback call to make sure that no one has installed a callback routine
after yours. If a handler is installed after yours, you should remain resident;

7) Remove its trap with the QPI_ClearPortTrap call. This call will clear all traps on a particular
I/O port, unless QEMM is trapping that port for itself, in which case QEMM's trapping alone
will remain in effect for that port;

8) Remove its callback by using the QPI_SetIOCallback call to set the previously existing
callback routine.

The following restrictions apply to this interface:

Only INs and OUTs of words or bytes are supported, not INs and OUTs of doublewords. Also,
string I/O (the INS and OUTS instructions) are supported only as of QEMM version 7.5 or
later.

QEMM cannot trap the I/O of VCPI protected-mode programs. Furthermore, because
Quarterdeck's DPMI driver (QDPMI) is implemented as a VCPI client, QEMM cannot trap the
I/O of DPMI clients either. Furthermore, these traps are no longer in effect when Microsoft
Windows 386 enhanced mode is running.

The following four calls allow you to bypass port trapping and read and write I/O ports
directly. QEMM 5.00 and later versions support these four calls.

    QPI_UntrappedIORead    equ          1A00h
                  ; Takes          AX = 1A00
                  ;                      DX = port to read
                  ; Returns      BL = value read

    QPI_UntrappedIOWrite    equ          1A01h
                  ; Takes          AX = 1A01
                  ;                      DX = port to write
                  ;                      BL = value to write

    QPI_UntrappedIOReadIndexed      equ          1A02h
                  ; Takes          AX = 1A02
                  ;                      DX = base port to read
                  ;                      BH = index into base port
                  ; Returns      BL = value read

    QPI_UntrappedIOWriteIndexed      equ          1A03h
                  ; Takes          AX = 1A03
                  ;                      DX = base port to write
                  ;                      BH = index into base port
                  ;                      BL = value to write

The QPI_UntrappedIO Call

The QPI_UntrappedIO call performs the same functions as the QPI_UntrappedIORead and the
QPI_UntrappedIOWrite calls, but it uses register values that are similar to the ones QEMM
passes to your I/O callback routine (including the flags in CX that give information about the
type and size of the I/O and the caller's interrupt flag). This call may therefore be easier to
use from within an I/O callback routine. QEMM 7.03 and later support this call.

    QPI_UntrappedIO          equ          1A04h
                  ; Takes          AX = 1A04
                  ;                      BX = value to write
                  ;                      DX = port to read or write
                  ;                      CX = type of I/O (see description above
                  ;                                of CX passed to callback routine)

                  ; Returns      BX = value read

The following five calls are described in the introduction above. QEMM 7.03 and later
versions support these calls.

    QPI_GetIOCallback      equ          1A06h
                  ; Takes          AX = 1A06
                  ; Returns      ES:DI = previous I/O callback function

    QPI_SetIOCallback      equ          1A07h
                  ; Takes          AX = 1A07
                  ;                      ES:DI = new I/O callback function

    QPI_GetPortTrap          equ          1A08h
                  ; Takes          AX = 1A08
                  ;                      DX = I/O port number
                  ; Returns      BL = 0 if port not trapped,
  BL = 1 if port already trapped

    QPI_SetPortTrap          equ          1A09h
                  ; Takes          AX = 1A09
                  ;                      DX = I/O port number

    QPI_ClearPortTrap      equ          1A0Ah
                  ; Takes          AX = 1A0A
                  ;                      DX = I/O port number

The QPI_SimulateHWInt Call

The QPI_SimulateHWInt call can be used by callback routines that wish to simulate a
hardware interrupt. When DESQview or DESQview/X is running, the interrupt handler that
should receive the interrupt may be in a different process from the current one. Use
QPI_SimulateHWInt to simulate an interrupt properly when DESQview or DESQview/X is
running. The DESQview API Reference Manual describes how to determine when DESQview
is running. QEMM 7.03 and later versions support this call.

    QPI_SimulateHWInt      equ          1C04h
                  ; Takes          AX = 1C04
                  ;                      BX = interrupt number to generate

 QEMM_Get_QEMM_SubVer equ 1E05h

          ; Takes            AX = 30d * 100h + 5 (1E05h)dle a GameRunner issue.
          ;                        CX = Length of buffer the QEMM Game Edition uniquely to
          ;                  ES:DI = buffer QEMMs, so:
          ; Returns        CX = number of bytes which could not fit in buffer

          ;                        CY if function not supported
          ; Fills in the given buffer with a null terminated string.    If
          ; the actual length of the string is greater than the length ofsion.    The
          ; the buffer (as passed in CX) then it clips the string to theit returns
          ; buffer length - 1 and puts a null in the last byte of the buffer
          ; and returns the number of extra bytes in CX.    If everything
          ; fits in the buffer, then the returned CX=0.

Return to Technotes Main Menu.

The technote PRODUCTS.TEC, in the TECHNOTE subdirectory of the directory into which you
installed QEMM, contains a list of compatibility issues between QEMM and other hardware
and software products. Please read this technote before beginning any troubleshooting
procedure.

Other online documents, including QEMMUTIL.TEC, TESTPRGS.TEC, and QPI.TEC,    descrbe
utility programs and technical information for programmersand advanced users of QEMM.   
Still others provide background information, compatibility notes, or tips and tricks related to
various types of hardware and software.

All of the QEMM technotes may be viewed by running QSETUP, either from DOS or from
Windows; QSETUP incorporates a file viewer that allows you to read these notes easily.
Technotes are also included in this online help file.

QEMM Utility Programs

Quarterdeck Technical Note #294

This technical note describes several miscellaneous utility programs included with QEMM.
These programs let you:

Load device drivers before QEMM.
Load device drivers from the DOS prompt.
Ensure that Microsoft Windows runs properly with QEMM if you install Windows after
QEMM.
Fix certain problems that occur on some Toshiba laptop PCs.
Fix problems that may occur if you are running LAN WorkPlace for DOS.
Fix bootup problems that occur with some Ultra Stor disk controllers.

Read this document if any of these topics concerns you.

DEVICE.COM: Loading Device Drivers from the DOS Prompt

DEVICE.COM is a program you can use to load certain device drivers from the DOS prompt
instead of from CONFIG.SYS. DEVICE.COM will load character device drivers (e.g., a mouse
driver, ANSI.SYS), but not block device drivers (e.g., drivers for disk compressors, RAM disks
or CD ROM drives). In general, a block device is one that will be assigned a drive letter (e.g.,
E:, H:). You may want to use DEVICE.COM for the following reasons:

To load a device driver in a DESQview or DESQview/X window, or in a Microsoft Windows DOS
window. For example, if you have a program that requires ANSI.SYS, you can load ANSI.SYS
in that program's window without imposing ANSI's overhead on all your other windows.

To load a device driver from the DOS prompt when you need it.

To load a device driver in AUTOEXEC.BAT to help QEMM's Optimize program do a more
efficient job of loading programs into upper memory. Occasionally a driver in CONFIG.SYS
uses enough upper memory that there is not enough left to load a subsequent driver or TSR.
In this case, you can try using DEVICE.COM to load the device driver in AUTOEXEC.BAT after
the later driver or TSR has been loaded. This method is especially worth trying if Optimize is
unable to load a very large TSR or driver into upper memory, after loading a preceding
driver into upper memory.

The syntax for DEVICE.COM is:

DEVICE device_driver_pathname

For example, to load ANSI.SYS from the DOS prompt you would type: DEVICE C:\DOS\
ANSI.SYS.

FIXINT13.SYS

FIXINT13.SYS prevents certain problems that can happen when the CONFIG.SYS file is being
executed and problems occur on the DOS stack. FIXINT13's job is to switch away from the
DOS stack and on to its own stack in conventional memory when a BIOS disk call occurs
while the CONFIG.SYS file is being processed. If you give FIXINT13 the /STACKSIZE=xxxx

parameter, you can also change the size of FIXINT13's stack, to prevent stack overruns. The
default size of the FIXINT13 stack is 256 bytes; xxxx can be any value between 128 and
1024.

FIXINT13 is needed with some UltraStor disk controllers to prevent "Device not found" errors
during the boot process. FIXINT13 with the /STACKSIZE=384 parameter also prevents
"Configuration too large for memory" errors or crashes in the CONFIG.SYS file on some
systems with Adaptec 1542c controllers.

If you think you need FIXINT13.SYS, load it in the CONFIG.SYS file, immediately before the
QEMM386.SYS line (and after DOSDATA.SYS and any other programs loaded before
QEMM386.SYS). For example:

DEVICE=C:\QEMM\FIXINT13.SYS

or

DEVICE=C:\QEMM\FIXINT13.SYS /STACKSIZE=384

HOOKROM.SYS: Loading Device Drivers before QEMM

HOOKROM.SYS is a device driver that allows you to load other device drivers before QEMM in
your CONFIG.SYS file. You may need HOOKROM.SYS if you need to load a device driver
before QEMM386.SYS and you are using QEMM's StealthROM feature (i.e., you have the
parameter ST:M or ST:F on the QEMM386.SYS device line in CONFIG.SYS). Though it is
usually best to load device drivers after QEMM386.SYS, there are some special drivers (like
the ones that manage some 80386 conversion hardware) that must load before
QEMM386.SYS. These drivers may obscure information that QEMM needs to enable the
StealthROM feature. If this is the case, QEMM386.SYS will post an error message that reads,
QEMM386: Disabling StealthROM because QEMM could not locate the ROM handler for INT x,
where x is the number of an interrupt handler that QEMM needs to manage for the
StealthROM process to work.

The solution to this problem is to place the line DEVICE=C:\QEMM\HOOKROM.SYS at the
beginning of the CONFIG.SYS file, before the driver that needs to be loaded before
QEMM386.SYS. HOOKROM will gather the necessary information for QEMM386.SYS, so that
the special driver does not interfere with the StealthROM process.

LWPFIX: Fixing Problems with LAN WorkPlace

LWPFIX.COM is a TSR that works around problems with some versions of Novell's LAN
WorkPlace for DOS. Specifically, some versions of Novell's TCPIP.EXE do not properly save
and restore the state of two of the processor's 32-bit extended registers; this can cause
malfunctions and crashes when other programs are using these registers. By adding the
command C:\QEMM\LWPFIX.COM to your AUTOEXEC.BAT after TCPIP.EXE is loaded, you
ensure that the original contents of these registers will be restored after TCPIP.EXE finishes
using them.

You will need LWPFIX.COM if you are using versions 4.00 or 4.01 of LAN WorkPlace for DOS;
you may need it with some later versions. LWPFIX.COM does no harm even if it is not
needed, so it may be worth loading LWPFIX.COM if you are experiencing problems with any
version of LAN WorkPlace for DOS. DESQview/X automatically loads a driver that performs
the same function as LWPFIX.COM, so LWPFIX.COM is only needed to fix problems that occur

outside of DESQview/X.

QWINFIX: Using Microsoft Windows with QEMM

QWINFIX.COM makes Microsoft Windows 386 enhanced mode compatible with QEMM.
QWINFIX does this by adding the line SystemROMBreakPoint=false to the [386Enh] section
of Windows' SYSTEM.INI file. If you have Windows installed on your PC at the time you install
QEMM, QEMM's installation program will run QWINFIX. If you install Windows after installing
QEMM, you should run QWINFIX. To run QWINFIX:

Switch to Windows' directory (usually \WINDOWS).

Type QWINFIX and press Enter.

QEMMREG: Displaying QEMM's Version and Serial Number

QEMMREG.COM displays QEMM's version number and your serial number. To use QEMMREG:

Type QEMMREG and press Enter.

SCANMEM.COM: Checking for Memory Above the 16MB Line

SCANMEM.COM is a program that scans your PC's memory, looking for    memory that is not
reported by the BIOS, and reports a parameter you can use to make QEMM see this memory.
This program may be useful if your system has more than 16 megabytes of memory and you
cannot access the memory above 16 megabytes after installing QEMM. The USERAM:XX:YY
parameter to QEMM performs a similar function, scanning all of the address range between
XX and YY; running SCANMEM is not a prerequisite to using USERAM.    However, you can   
use SCANMEM.COM to find the precise ranges of addresses that can be specified to USERAM;
this may save a couple of moments when you boot your machine.

Some systems with more than 16 megabytes of memory do not report all of their memory
through the appropriate BIOS call (the standard method for reporting how much memory is
installed in a system). On such a system, QEMM will not automatically detect the memory
above 16 megabytes. Certain Compaq and Dell PCs and PCs with older Micronics
motherboards (e.g., some Gateways) with more than 16 megabytes of memory are the most
notable examples. SCANMEM tries to locate regions of RAM that QEMM does not detect
automatically when it loads. If you have a system with more than 16 megabytes of RAM and
you suspect that all your memory is not available, follow the steps below:

First, run Manifest to see if the memory is recognized. Type

MFT

 and press Enter.

Near the bottom of the Manifest System Overview screen, you will see a number for Total
Extended Memory (pooled). If you have over 16 megabytes of RAM and the amount
displayed is less than 16384K, your system's BIOS is not reporting the memory above 16
megabytes, and you should continue with the steps below.

Note: If you are having problems accessing memory above 16 megabytes on a Dell PC,
contact Dell's technical support. They may be able to supply you with an updated version of
the system BIOS that fixes this problem.

You should not run the SCANMEM program when QEMM386.SYS, DOS's HIMEM or EMM386,
or any other memory manager is loaded. Similarly, you should not use any program that
uses extended memory without the assistance of a memory manager; some disk caches or
RAM disks may do this.    The ideal environment for running SCANMEM is a completely clean
boot with no CONFIG.SYS or AUTOEXEC.BAT.

Reboot your PC without any extended memory managers or consumers present.    After
rebooting, type

SCANMEM

 and press Enter.

SCANMEM will scan your PC's memory, and if it finds a memory region that QEMM has not
detected, it will post a message listing
the exact form of the USERAM=xxxxxxxx-yyyyyyyy parameter that you should put on the
QEMM386.SYS device line in CONFIG.SYS. SCANMEM will list an address range in eight-digit
hexadecimal format    (e.g., USERAM=00100000-00206000). When you add the USERAM
parameter to the QEMM386.SYS device line, use all the digits given in the address. This
parameter will reclaim the memory; SCANMEM's only job is to suggest the appropriate
USERAM parameter (for information on the USERAM parameter, see Chapter 7).

If SCANMEM lists a USERAM parameter, jot it down, when edit your CONFIG.SYS file and add
the exact parameter SCANMEM reported to the QEMM386.SYS device driver line. Save your
CONFIG.SYS file and reboot.

After rebooting, you should be able to access the memory above 16 megabytes. You can use
Quarterdeck Manifest to verify that the memory is recognized (see the first step above).

SCANMEM may post various messages:

Address wrap at xxxxx, where xxxxx is a memory address, means that SCANMEM has
detected that your PC's address space is smaller than the four gigabytes that the 386
processor can address. This message is for your information and does not invalidate
SCANMEM's findings.

NOUSERAM=xxxxx-yyyyy, where xxxxx and yyyyy are memory addresses, means that
SCANMEM does not detect memory in the address range xxxxx-yyyyy, even though your
system's BIOS has reported enough extended memory to fill these addresses. If you see this
message, you may wish to use your PC's system setup to reconfigure your machine so that
the BIOS reports extended memory properly.

Error: Invalid USERAM due to memory cache! means that SCANMEM has detected that the
USERAM=xxxxx-yyyyy parameter that it last printed to the screen is invalid and should not
be used. You should ignore only the last USERAM message printed to the screen; previous
USERAM messages are valid. This error may occur if an unusual memory cache makes the
contents of memory appear to be variable.

T386.EXE: Displaying the Pop-up Menu on Toshiba Laptops

T386.EXE is a program for Toshiba laptop computers which allows the Toshiba pop-up menu

to appear when QEMM is enabled. T386 works on many Toshiba laptops.

If the computer is in virtual-8086 mode, Toshiba's pop-up menu will display only if the
expanded memory manager calls itself "T386." The computer is always in virtual-8086 mode
when expanded memory is in use or High RAM has been created. Therefore, when QEMM is
performing these services you will not be able to access the pop-up menu. The T386
program makes QEMM appear to be named T386 and allows the menu to work properly. To
use T386.EXE:

Type T386 and press Enter

You can load T386.EXE into upper memory by typing LOADHI T386.

You may want to load T386 from your AUTOEXEC.BAT file, so it will run whenever you start
your PC. We suggest you run Optimize after adding this or any other program to
AUTOEXEC.BAT.

To remove T386 from memory (even if it is loaded into upper memory):

Type T386 R and press Enter.

Return to Technotes Main Menu.

QEMM and Bus-mastering Devices
Certain SCSI disk controller cards (and, less frequently, ESDI disk controllers and network
cards) use a technique called bus-mastering to speed up disk access. This technique can
cause a conflict when a memory manager (such as QEMM) attempts to load a device driver
or TSR into upper memory.

QEMM automatically supports bus-mastering disk controllers.    In the vast majority of cases,
QEMM can detect a bus-mastering hard disk controller and will take steps to prevent
problems. (This is not true if the card controls something other than a hard drive or if QEMM
is not being loaded from the bus-mastering hard drive.)

For information on QEMM and bus-mastering devices, refer to our technical note "Bus-
Mastering Devices and QEMM" (BUS-MAST.TEC).

Return to Hints Main Menu.

QEMM and DESQview or DESQview/X
If you are using DESQview or DESQview/X, you can increase the amount of memory in
each window by using the StealthROM feature. To find out if you are using StealthROM,
select "Review or change QEMM parameters" from the main QEMM Setup menu and look for
the selection "Stealth system and video ROMs." If you see the word Mapping or Frame at
the end of that line, StealthROM is already enabled. If you see the word Off, you can enable
StealthROM by typing "S" or hitting the Enter key, then following the on-screen instructions.
Online Help will tell you more about the Mapping and Frame methods of StealthROM.
If you have DOS version 5 or 6, QEMM's installation places the command DOS=HIGH in your
CONFIG.SYS file (if it is not already there). This is a DOS command that loads part of DOS
and DOS BUFFERS into the HMA (the first 64K of memory above 1MB).

You may be able to increase the amount of memory in DESQview or DESQview/X windows by
deleting DOS=HIGH from CONFIG.SYS. To find out, first run Memory Status from inside
DESQview or DESQview/X. Make a note of the figure in the bottom right under Largest
Available Expanded Memory. Then delete DOS=HIGH from your CONFIG.SYS and run
Optimize by typing OPTIMIZE at the DOS prompt.
When Optimize completes, run Memory Status from inside DESQview or DESQview/X and
check Largest Available Expanded Memory again. If it is a larger number than before,
you are better off without DOS=HIGH. Otherwise, add the line DOS=HIGH back to
CONFIG.SYS and re-run Optimize.
For more suggestions on increasing the size of your DESQview or DESQview/X windows, see
the Technical Note "Maximizing Conventional Memory" (MAXMEM.TEC).

Return to Hints Main Menu.

QEMM and DR-DOS or Novell DOS
DOS-Up is fully compatible with Novell DOS 7 and DR-DOS 5 and 6.    For complete
information on using QEMM with DR-DOS 6 or Novell DOS 7, see the text file "QEMM and
Novell DOS 7 and DR-DOS 6" (NW&DRDOS.TEC).

Return to Hints Main Menu.

QEMM and Disk Compression Software
QEMM is fully compatible with current disk compression software and includes special
features for both Stacker and MS-DOS's DoubleSpace and DriveSpace. QEMM's Stealth
D*Space feature reduces the memory overhead of DoubleSpace or DriveSpace to as little as
3K.    If you are using MS-DOS disk compression, this feature will be displayed on the QSETUP
main menu; choose L for "Enable or disable Stealth D*Space", and Yes to enable the feature.

Adding the /QD parameter to the STACKER.INI file can reduce Stacker's overhead to as little
as 10K. Please refer to Chapter 1 of the QEMM manual, or to the technotes listed below for
details.

If you are using older disk compression software, you may need to take special steps to use
QEMM.

Stacker
If you have Stacker versions from 2.01 through 4.0, no special steps
are generally required; however, we do suggest you read the
technote "QEMM and Stacker" (STACKER.TEC) before running
Optimize.

SuperStor
Before running Optimize, read "QEMM and SuperStor Disk
Compression" (SSTOR.TEC).

XtraDrive
Please see the technote "XtraDrive and QEMM" (XTRADRV.TEC).

DoubleSpace or DriveSpace
If you are using MS-DOS 6's DoubleSpace or DriveSpace, you can
save 31K-49K of memory by using QEMM's Stealth D*Space feature to
relocate the DoubleSpace or DriveSpace device driver in expanded
memory.    See Chapter 5 of the QEMM Reference Manual for details.

Return to Hints Main Menu.

QEMM and Games

Quarterdeck Technical Note #284

Q. Why do I need QEMM to run with my games?

A. In order to create some of the spectacular effects you see while playing your games, the
authors sometimes "break the rules." That is, they do not comform to industry standards
with regard to memory management. For this reason, you may come across an occasional
game that refuses to run when any memory manager is present.

Most games will run with QEMM or another memory manager. Many of them, however,
require an 80386 or faster processor, at least 2 megabytes of memory, and a VGA or better
graphics card. You may experience problems if your system is not powerful enough to satisfy
the needs of these games. In addition, some games refuse to run without 600k or more of
available conventional memory. QEMM can make up to 634k conventional memory available
on many systems, even after your necessary device drivers and TSRs are loaded. If your
problem is related to insufficient conventional memory, QEMM's Optimize program, which
loads drivers and TSRs into upper memory, may be the solution.

Q. How should I configure my system using QEMM to get the maximum
performance that I require for my games?

 A. If you are running low on memory, you should create a "minimal system". A minimal
system configuration is one in which you load only the TSRs and drivers absolutely
necessary to run the game in question, and nothing else. This will ensure that the game will
not only have the memory that it needs to run, but hat the chances of another program or
TSR interfering with the game are minimized.

This note will show you how to create a multiple configuration if you are using MS-DOS 6.x,
PC-DOS 6.x. or later, or how to create a minimal system boot floppy. A minimal system boot
floppy will allow you to insert a floppy disk in the A: drive,    boot the computer, and load a
configuration from the floppy    that is optimal for the games that you are using. Users of   
MS-DOS 6 and PC-DOS 6 can alternatively set up a "multiple configuration" that allows
different configurations to be chosen when booting the computer (thus, placing a floppy in
the    A: drive is not necessary). Please note that QEMM 7 or later is required to fully support
multiple configurations.

CREATING A MULTIPLE BOOT CONFIGURATION

NOTE: THIS SECTION IS FOR PC-DOS & MS-DOS 6.x SYSTEMS ONLY

MS- and PC-DOS 6 and later support multiple configurations, which allow you to choose
which group of drivers you would like to load. QEMM fully supports multiple configurations;
this section is intended to help you create one quickly and painlessly. If you need any
additional assistance, contact the manufacturer of the DOS that you are using.

 To create a game configuration:

 1) From the DOS prompt, type:

        C: <Enter>
        CD\ <Enter>

        EDIT AUTOEXEC.BAT <Enter>

        This will allow you to edit the AUTOEXEC.BAT file on the boot drive.

 2) Add the following lines at the very top of this file:

        GOTO %CONFIG%
        :NORMAL

 3) Go to the bottom of your AUTOEXEC.BAT (hit the down arrow until you are at the end of
the file) and add the following lines:

        GOTO END
        :GAME

 4) Using Copy and Paste, copy the following lines from your NORMAL configuration
(everything between the :NORMAL line and the GOTO END line) to the GAME configuration
(below the :GAME line):

        CD-ROM (commonly MSCDEX.EXE)

        Mouse (commonly MOUSE.EXE or MOUSE.COM)

        Sound (most likely statements that start with the word SET and/or the lines that are
added by your Sound board. Common examples include SBCONFIG and MVAUDIO.)

        Path    (usually looks like PATH=C:\DOS;C:\ ...)

        Prompt (usually looks like PROMPT PG)

        Joystick (if you need a driver to run your joystick)

          EXAMPLE:

          GOTO %CONFIG%

          :NORMAL
          @ECHO OFF
          SET TEMP=C:\TEMP
          SET NU=C:\NU
          SET NORTON=C:\NORTON
          REM THE "CHECK" LINE BELOW PROVIDES ADDITIONAL SAFETY FOR
          REM STACKED DRIVES. PLEASE DO ONT REMOVE IT.
          C:\STACKER\CHECK /WP
          PROMPT PG
          PATH=C:\PROAUDIO;C:\QEMM;C:\DOS;C:\WINDOWS;C:\STACKER;C:\;
          SET MOUSE=C:\MOUSE
          C:\QEMM\LOADHI /R:2 C:\DOS\MOUSE.EXE
          C:\QEMM\LOADHI /R:2 C:\DOS\SHARE.EXE /L:500 /F:5100
          C:\QEMM\LOADHI /R:2 C:\DOS\MSCDEX.EXE /D:MSCD001 /M:20
          SET BLASTER=A220 D1 I5 T3
          IMAGE
          C:\QEMM\LOADHI /R:2 C:\DRIVERS\FASTLNK.EXE /Q
          GOTO END

          :GAME
          @ECHO OFF
          SET TEMP=C:\TEMP
          REM THE "CHECK" LINE BELOW PROVIDES ADDITIONAL SAFETY FOR
          REM STACKED DRIVES. PLEASE DO ONT REMOVE IT.
          C:\STACKER\CHECK /WP
          PROMPT PG
          PATH=C:\PROAUDIO;C:\QEMM;C:\DOS;C:\WINDOWS;C:\STACKER;C:\;
          SET MOUSE=C:\MOUSE
          C:\QEMM\LOADHI /R:2 C:\DOS\MOUSE.EXE
          C:\QEMM\LOADHI /R:2 C:\DOS\MSCDEX.EXE /D:MSCD001 /M:4 /E
          SET BLASTER=A220 D1 I5 T3
          GOTO END

          :END
          REM -- END OF MULTI --

        On the line that reads MSCDEX.EXE, if there is an /M:xx, make sure that the number is
less than or equal to 15 (/M:15). If it is not, please feel free to change it. Then, if there is not
a    /E on that line, please add one.

        EXAMPLE: MSCDEX.EXE /D:MSCD001 /V /M:4 /E

        Go to the very end of the AUTOEXEC.BAT.    Hit <Enter> a couple of times to make a
blank line and add the following line:

          :ND

        Save the file and exit.

 5) Edit your CONFIG.SYS file by typing the following:

          EDIT CONFIG.SYS <Enter>

 6) Type the following as the first lines in your CONFIG.SYS:

          [menu]
          menuitem=NORMAL, Normal Configuration
          menuitem=GAME, Games Configuration

          [NORMAL]

 7) Go to the bottom of your CONFIG.SYS file. (Press the down arrow until you get to the
bottom of the file) and type

        [GAME] <Enter>

        Copy the following lines from your Normal Configuration:

          DOSDATA.SYS
          QEMM386.SYS
          DOS-UP.SYS
          SHELL=C:\DOS\COMMAND.COM
          FILES

          BUFFERS

          CD-ROM Driver
          (example - DEVICE=C:\CDROM\CDROMDRV.SYS)

          Sound Driver
          (example - DEVICE=C:\SOUND\SBMVAUD.SYS)

          Disk Compression Drivers
          (examples - DEVICE=C:\STACKER\STACHIGH.SYS
                                  DEVICE=C:\STACKER\STACKER.COM
                                  DEVICE=C:\QEMM\ST-DBL.SYS
                                  DEVICE=C:\DOS\DBLSPACE.SYS)

              EXAMPLE:

              MENUITEM=NORMAL, Normal Configuration
              MENUITEM=GAME, Games Configuration

              [NORMAL]
              DEVICE=C:\QEMM\DOSDATA.SYS
              DEVICE=C:\QEMM\QEMM386.SYS RAM X=B000-B1FF R:1 ST:M
              DEVICE=C:\QEMM\DOS-UP.SYS @C:\QEMM\DOS-UP.DAT
              DEVICE=C:\QEMM\LOADHI.SYS /R:1 C:\QEMM\QDPMI.SYS ...
              DEVICE=C:\STACKER\DPMS.EXE
              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\STACKER\STACHIGH.SYS
              DEVICE=C:\CD-ROM\TSLCDR.SYS /D:MSCD001 /P:3 /S:330
              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\DOS\ANSI.SYS
              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\DOS\SETVER.EXE
              DEVICE=C:\QEMM\LOADHI.SYS /R:1 C:\DRIVERS\SPEEDVID.SYS /VGA
              FILES=40
              BUFFERS=25
              LASTDRIVE=Z
              STACKS=0,0
              SHELL=C:\QEMM\LOADHI.COM /R:2 C:\DOS\COMMAND.COM /P /E:512

              [GAME]
              DEVICE=C:\QEMM\DOSDATA.SYS
              DEVICE=C:\QEMM\QEMM386.SYS RAM X=B000-B1FF R:1 ST:M
              DEVICE=C:\QEMM\DOS-UP.SYS @C:\QEMM\DOS-UP.DAT
              DEVICE=C:\STACKER\DPMS.EXE
              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\STACKER\STACHIGH.SYS
              DEVICE=C:\CD-ROM\TSLCDR.SYS /D:MSCD001 /P:3 /S:330
              FILES=40
              BUFFERS=25
              LASTDRIVE=Z
              STACKS=0,0
              SHELL=C:\QEMM\LOADHI.COM /R:2 C:\DOS\COMMAND.COM /P /E:512

        If any of the following parameters are on the QEMM386.SYS line, remove them:

              ST:M ST:F XST=C000 XST=E000 XST=F000

        Add the following parameters to the QEMM386.SYS line:

              DMA=128 RH:N SH:N XBDA:L

          Example:
          (Before)
          DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XST=C000 R:1

          (After)
          DEVICE=C:\QEMM\QEMM386.SYS RAM DMA=128 RH:N SH:N XBDA:L R:1

          Save the file and exit.

For further information on creating Multiple Boot Configurations please refer to your DOS
Manual.

 9) Type the following:

            CD\QEMM <Enter>
            Optimize /NOST <Enter>

        Select the Games Configuration followed by the Express Optimize option.

 10) You are finished with this part - go to ** CONCLUSION **.

 CREATING A BOOT DISK

 To create a game boot disk,

 1) Find a blank, unformatted floppy that will fit in your A: drive, or a floppy disk containing
nothing you wish to save.

 2) Label this floppy disk "GAME FLOPPY".

 3) From the DOS prompt, type:

        FORMAT A: /S <Enter>

        This will format the floppy disk, and will make it bootable.

 4) After the format is complete and you are back at a DOS prompt, type:

          COPY C:\CONFIG.SYS A:\ <Enter>
          COPY C:\AUTOEXEC.BAT A:\ <Enter>
          A: <Enter>

 5) Edit your A:\AUTOEXEC.BAT file.

        a) DOS 5 users will be able to type EDIT AUTOEXEC.BAT and <Enter>

        b) DOS 3 or 4 users will need to use their favorite text editor.

        c) DR-DOS users will be able to type EDITOR AUTOEXEC.BAT and <Enter>

 6) Make the following changes:

        a) Insert the letters "REM " (the word REM followed by a single space) in front of every
line EXCEPT the following:

              CD-ROM (commonly MSCDEX.EXE)

              Mouse (commonly MOUSE.EXE or MOUSE.COM)

              Sound (most likely statements that start with the word SET and/or the lines that are
added by your Sound board. Common ones are SBCONFIG and MVAUDIO.)

              Path    (usually looks like PATH=C:\DOS;C:\ ...)

              Prompt (usually looks like PROMPT PG)

              Joystick (if you need a driver to run your joystick)

        b) On the line that reads MSCDEX.EXE, if there is an /M:xx, make sure that the number is
equal to or less than 15    (/M:15). If it is not, please feel free to change it. Then, if there is
not a /E on that line please add one.

                EXAMPLE: MSCDEX.EXE /D:MSCD001 /V /M:4 /E

        c) Save the file and exit.

              EXAMPLE:

              Before
              ===================================
              @ECHO OFF
              SET TEMP=C:\TEMP
              SET NU=C:\NU
              SET NORTON=C:\NORTON
              REM THE "CHECK" LINE BELOW PROVIDES ADDITIONAL SAFETY FOR
              REM STACKED DRIVES. PLEASE DO NOT REMOVE IT.
              C:\STACKER\CHECK /WP
              PROMPT PG
              PATH=C:\PROAUDIO;C:\QEMM;C:\DOS;C:\WINDOWS;C:\FUSION;C:\;
              SET MOUSE=C:\MOUSE
              C:\QEMM\LOADHI /R:2 C:\DOS\MOUSE.EXE
              C:\QEMM\LOADHI /R:2 C:\DOS\SHARE.EXE /L:500 /F:5100
              C:\QEMM\LOADHI /R:2 C:\DOS\MSCDEX.EXE /D:MSCD001 /M:20
              SET BLASTER=A220 D1 I5 T3
              IMAGE
              C:\QEMM\LOADHI /R:2 C:\DRIVERS\FASTLNK.EXE /Q

              After
              ===================================
              @ECHO OFF
              SET TEMP=C:\TEMP
              SET NU=C:\NU
              SET NORTON=C:\NORTON
              REM THE "CHECK" LINE BELOW PROVIDES ADDITIONAL SAFETY FOR

              REM STACKED DRIVES. PLEASE DO NOT REMOVE IT.
              C:\STACKER\CHECK /WP
              PROMPT PG
              PATH=C:\PROAUDIO;C:\QEMM;C:\DOS;C:\WINDOWS;C:\FUSION;C:\;
              SET MOUSE=C:\MOUSE
              C:\QEMM\LOADHI /R:2 C:\DOS\MOUSE.EXE
              REM C:\QEMM\LOADHI /R:2 C:\DOS\SHARE.EXE /L:500 /F:5100
              C:\QEMM\LOADHI /R:2 C:\DOS\MSCDEX.EXE /D:MSCD001 /M:4 /E
              SET BLASTER=A220 D1 I5 T3
              REM IMAGE
              REM C:\QEMM\LOADHI /R:2 C:\DRIVERS\FASTLNK.EXE /Q

 7) Edit your A:\CONFIG.SYS file.

        a) DOS 5 users will be able to type EDIT CONFIG.SYS and <Enter>

        b) DOS 3 or 4 users will need to use their favorite text editor.

        c) DR-DOS users will be able to type EDITOR CONFIG.SYS and <Enter>

 8) Make the following changes:

        a) Using the REM command, remark out all lines except the following:

              DOSDATA.SYS
              QEMM386.SYS
              DOS-UP.SYS
              SHELL=C:\DOS\COMMAND.COM
              FILES
              BUFFERS

              CD-ROM Driver
              (example - DEVICE=C:\CDROM\CDROMDRV.SYS)

              Sound Driver
              (example - DEVICE=C:\SOUND\SBMVAUD.SYS)

              Disk Compression Drivers
              (example - DEVICE=C:\STACKER\STACHIGH.SYS
                                    DEVICE=C:\STACKER\STACKER.COM
                                    DEVICE=C:\QEMM\ST-DBL.SYS
                                    DEVICE=C:\DOS\DBLSPACE.SYS)

              EXAMPLE:

              Before
              =======================================
              DEVICE=C:\QEMM\DOSDATA.SYS
              DEVICE=C:\QEMM\QEMM386.SYS RAM X=B000-B1FF R:1 ST:M
              DEVICE=C:\QEMM\DOS-UP.SYS @C:\QEMM\DOS-UP.DAT
              DEVICE=C:\QEMM\LOADHI.SYS /R:1 C:\QEMM\QDPMI.SYS ...
              DEVICE=C:\STACKER\DPMS.EXE
              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\STACKER\STACHIGH.SYS
              DEVICE=C:\CD-ROM\TSLCDR.SYS /D:MSCD001 /P:3 /S:330
              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\DOS\ANSI.SYS

              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\DOS\SETVER.EXE
              DEVICE=C:\QEMM\LOADHI.SYS /R:1 C:\DRIVERS\SPEEDVID.SYS /VGA
              FILES=40
              BUFFERS=25
              LASTDRIVE=Z
              STACKS=0,0
              SHELL=C:\QEMM\LOADHI.COM /R:2 C:\DOS\COMMAND.COM /P /E:512

              After
              =======================================
              DEVICE=C:\QEMM\DOSDATA.SYS
              DEVICE=C:\QEMM\QEMM386.SYS RAM X=B000-B1FF R:1 ST:M
              DEVICE=C:\QEMM\DOS-UP.SYS @C:\QEMM\DOS-UP.DAT
              DEVICE=C:\QEMM\LOADHI.SYS /R:1 C:\QEMM\QDPMI.SYS ...
              DEVICE=C:\STACKER\DPMS.EXE
              DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\STACKER\STACHIGH.SYS
              DEVICE=C:\CD-ROM\TSLCDR.SYS /D:MSCD001 /P:3 /S:330
              REM DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\DOS\ANSI.SYS
              REM DEVICE=C:\QEMM\LOADHI.SYS /R:2 C:\DOS\SETVER.EXE
              REM DEVICE=C:\QEMM\LOADHI.SYS /R:1 C:\DRIVERS\SPEEDVID.SYS /VGA
              FILES=40
              BUFFERS=25
              LASTDRIVE=Z
              STACKS=0,0
              SHELL=C:\QEMM\LOADHI.COM /R:2 C:\DOS\COMMAND.COM /P /E:512

        b) If any of the following parameters are on the QEMM386.SYS line, please remove them:

              ST:M ST:F XST=C000 XST=E000 XST=F000

              Please add the following parameters to the QEMM386.SYS line:

              DMA=128 RH:N SH:N XBDA:L

              Example:

              (Before)
              DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XST=C000 R:1

              (After)
              DEVICE=C:\QEMM\QEMM386.SYS RAM DMA=128 RH:N SH:N XBDA:L R:1

        c) Save the file and exit.

 9) Type the following:

          C: <Enter>
          CD\QEMM <Enter>
          Optimize /B:A /NOST <Enter>

          This will begin the Optimize process, which will provide as much conventional and
upper memory as possible. When asked, select "Express Optimize" to speed the Optimize
procedure up.

 10) You are finished with this part - go to the ** CONCLUSION ** section at the end of this
technical note.

  ** CONCLUSION **

                                  You are now ready to play!

 Q. My game says it *STILL* does not have enough memory. What do I do now?

 A. Consult Quarterdeck Technical Note MAXMEM.TEC for suggestions.
   
   
SPECIAL NOTE:    KNOWN INCOMPATIBILITIES
         
The following games are known to be either incompatible with QEMM, or require special
handling.    Some games will not run    with any memory management software because the
game designers are taking memory management into their own hands.
   
Tornado (by Spectrum Holobyte)
Do not load COMMAND.COM or Stacks high.
   
Links386 (by Access)
Make sure you are using their latest version, QEMM 7.04 (or later), and add VS:Y to the end
of the QEMM386.SYS line in your CONFIG.SYS.
   
Rebel Assault, SimCity 2000, DOOM. and other DOS4GW v1.9 Extended Games
The DOS-Extender these games use does not function properly with AMI BIOS systems using
the Hidden Refresh option.    For the games to function properly, disable this option, or obtain
the latest release from the game manufacturer.
   
Comanche (by NovaLogic)
Will not run with any Expanded memory manager by design.    You must use HIMEM.SYS or
equivalent XMS manager only.

Return to Technotes Main Menu.

QEMM and Microsoft Windows
QEMM is fully compatible with Microsoft Windows 3.x and WIndows 95. QEMM
automatically gives you 8K-24K more memory for running DOS programs inside Windows
386 enhanced mode.
QEMM 8 includes three exciting new features to speed up Windows and allow users to run
more programs simultaneously: 

FreeMeg
Resource Manager
MagnaRAM

You can also use QEMM's VIDRAM feature to extend the amount of memory available to
DOS text-based programs running in Windows by up to 96K. (For information on using
VIDRAM, see Chapter 6 in the QEMM Reference Manual.)

In the unlikely event that you experience a Windows-related problem after installing QEMM,
refer to the technote WINFLOW.TEC.

Return to Hints Main Menu.

QEMM and Stacker

Quarterdeck Technical Note #270

Q. Is Stacker 4 compatible with QEMM 8?

A. Yes. In fact, since Stacker 4 loads itself before DOS on    MS-DOS 6 and Novell DOS 7
systems, Stacker 4 is quite    transparent to QEMM, which represents a tremendous benefit
over    previous versions.

Not only is Stacker 4 compatible with QEMM 7.5 and 8, but these versions of QEMM and
Stacker 4 include technology jointly developed by    Quarterdeck and Stac Electronics,
whereby Stacker can greatly    reduces the amount of conventional memory it uses; thus   
Quarterdeck and Stac Electronics recommend that you take    advantage of this technology
by upgrading to Stacker 4.

The earliest versions of Stacker 4 did not include this    technology; a program to update
Stacker feature is available to    all registered users of Stacker 4, either from Stac Electronics 
or from Quarterdeck, under the filename S4UP.EXE.

To get your copy of this file, join the CompuServe forum for    either Quarterdeck or Stac, by
typing GO QUARTERDECK or GO STAC    at any CompuServe main prompt. Alternatively,
using your modem,    call

Stac Electronics BBS          (619) 431-5956   
Quarterdeck BBS                        (310) 309-3227

In order to obtain an upgrade to Stacker 4, or technical    assistance from Stac Electronics,
call the numbers below.

Stac Electronics Technical Support    (619) 431-6712 (voice)

Once you have acquired this file and run the update, you may    activate the Stacker feature
in this way:

1. If you are currently inside Windows, exit it.   
2. At the DOS prompt, change to the Stacker directory.   
3. Type ED /I   
4. Press Enter to insert a new line.   
5. On this new line, type /QD   
6. Press Ctrl-Z to exit the editor, and save your changes.   
7. Restart your system to put the changes into effect.

Q. I installed Stacker 4 on my system and after running Optimize I    found that I
have 2K less available conventional memory. Why    is this?

A. Stacker 4 now uses Novell's DOS Protected Mode Services (DPMS),    through the driver
DPMS.EXE, to place most of the Stacker    program into extended memory. When you install
Stacker 4 on    your system, the DPMS.EXE driver will automatically be placed    into the
CONFIG.SYS file directly above the STACHIGH.SYS device    driver line. The use of the
DPMS.EXE driver will reduce the    size of the Stacker program from about 44K (more or less, 
depending upon your configuration) to about 17K, and /QD line    in STACKER.INI will reduce
Stacker's overhead still further.    However, the DPMS.EXE driver cannot be loaded into High

RAM, so    it must load into conventional memory. This will reduce your    conventional
memory by about 2K, but since your Stacker driver    is now much smaller, you should be
able to load more programs    into High RAM. Further, the Stacker-QEMM technology
mentioned    above will still further reduce the amount of memory that    Stacker uses.

Q. What if I don't want to use the DPMS.EXE driver?

A. If you don't want to use the DPMS.EXE driver, you may remove it    from the CONFIG.SYS
file. Keep in mind that after removing    DPMS.EXE and rebooting, the Stacker driver will be
about 44K in    size, so you may need to run Optimize after making this change.

Q. How do I go about removing the DPMS.EXE driver from the    CONFIG.SYS file?

A. Stacker 4 has a new configuration program called CONFIG.EXE. To    see what changes you
can make to Stacker's configuration,    simply type:

CONFIG /? <ENTER>

Two of the listed options that will display are:

/D Adds Stacker DPMS driver to configuration files.    /D- Removes Stacker DPMS driver from
configuration files.

If you want to remove the DPMS.EXE driver from the CONFIG.SYS    file, simply type:

CONFIG /D- <ENTER>

You will then be asked if you are sure you want the CONFIG.SYS    changed. To save the
changes made, press "Y".

Q. Is there any other way I can reduce the size of the Stacker    driver?

A. If you want to reduce the size of the Stacker driver without    using DPMS.EXE, you may
still use the /EMS parameter to load    Stacker into expanded memory. This is much less
advantageous    than the /QD parameter, and is recommended neither by Stac    Electronics
nor by Quarterdeck.

If you add the /EMS parameter to the STACKER.INI file and you    want to use QEMM's
STEALTH technology, you must add a DBF:2    parameter to the QEMM device line in the
CONFIG.SYS file (this    can be done from ED, too).

 Q. Is Stacker 4 compatible with QEMM's ST-DSPC.SYS (Stealth      D*Space) driver?

A. No. Even though Stacker uses a file called DBLSPACE.BIN in    order to load before the
CONFIG.SYS file loads, it is not    sufficiently similar to Microsoft's DoubleSpace or DriveSpace 
programs to allow ST-DSPC.SYS to work. Stealth D*Space will    only work with Microsoft's
DOS 6 DoubleSpace or DriveSpace.

Q. After I installed Stacker 4 over my DoubleSpace program, I      received the
following message:

ST-DBL: DBLSPACE is not in use, so there is no need to load    ST-DBL.SYS.

A. The Stacker 4 install does not detect or remove QEMM's ST-DBL.SYS    or ST-DSPC.SYS
drivers, one of which may be in your CONFIG.SYS    file if you were using Microsoft's disk

compression prior to    installing Stacker. Upon installation, Stacker simply places a    device
line in the CONFIG.SYS file that reads

DEVICE=C:\STACKER\STACHIGH.SYS

at the end of the CONFIG.SYS file. If you were previously    loading the ST-DBL.SYS device
driver with a multi-config    system, replace every ST-DBL.SYS device line with the   
STACHIGH.SYS device line above. If you are loading it from a    single boot CONFIG.SYS,
simply replace the one incidence of    ST-DBL.SYS.

Q. What are the different sizes of the Stacker driver?

A. The size of the driver is strongly dependend on the size of our    hard drive and the size of
Stacker's compressed clusters. If    you are using Stacker with DPMS.EXE and the /QD
parameter, the    driver's resident size will be as little as 10K. Without the    /QD parameter,
the driver will typically be at least 8K larger.    If you are using Stacker's /EMS switch, the
driver should be at    least 25K. If you are not using DPMS.EXE or the /EMS switch,    the driver
should be at least 44K. The initialization size,    the size necessary to load the driver before it
shrinks down to    its resident size, is 87K no matter what parameters you use.

Stacker 3.1 and earlier:

As mentioned above, both Quarterdeck and Stac Electronics strongly recommend upgrading
to Stacker 4.    This portion of this document discusses issues related to Stacker    versions
2.01 through 3.1. Most references to Stacker will be    without a version number, except in
those instances where it is    necessary to specify a particular version.

Any version of Stacker 2.01 or later properly detects the    presence of QEMM, regardless of
whether or not you install QEMM    first. If you install QEMM after installing Stacker and you
run    OPTIMIZE, Stacker will detect OPTIMIZE and copy the pertinent QEMM    files from the
COMPRESSED drive to the UNCOMPRESSED boot drive.

1.    This copy process is usually successful, but if you do not have    enough room on your
UNCOMPRESSED drive to hold the QEMM files, you    must use the Stacker utility STAC.COM
to increase the size of the    UNCOMPRESSED drive and then either run OPTIMIZE again or
manually    copy over the correct files to the drive. The following is a list    of those files
needed on the UNCOMPRESSED boot drive:

QEMM386.SYS   
OPTIMIZE.COM   
LOADHI.SYS   
TESTBIOS.COM   
LOADHI.COM   
BUFFERS.COM   
RSTRCFG.SYS   
WINHIRAM.VXD
WINSTLTH.VXD   
MCA.ADL (if a Micro Channel machine, typically an IBM PS/2)

To increase the size of the UNCOMPRESSED partition, through    Stacker, type:

STAC <ENTER>

at the DOS prompt. For further information regarding the STAC.COM    program, please refer
to your Stacker manual.

 2. IF YOU ARE NOT USING SSWAP.COM

If you are NOT using the SSWAP.COM program to swap drive names,    then Stacker will not
detect the presence of OPTIMIZE and copy the    correct files to the UNCOMPRESSED drive.
However, this should not    be a problem because you will most likely have already installed   
QEMM on the UNCOMPRESSED drive.

 3. "/SYNC" PARAMETER WITH SSWAP.COM

If you are using the SSWAP.COM program, in order to maintain    compatibility with OPTIMIZE,
you MUST have the "/SYNC" parameter    at the end of the SSWAP.COM line. The parameters
differ slightly    between version 2.01 and 3.0. Examples of the two versions are    below:

DEVICE=C:\STACKER\SSWAP.COM C:\STACVOL.DSK /SYNC (VERSION 2.01)

DEVICE=C:\STACKER\SSWAP.COM C:\STACVOL.DSK /SYNC+ (VERSION 3.00)

Stacker places the "/SYNC" parameter at the end of the SSWAP.COM    line during installation.
It is only discussed in this document    because sometimes it is accidentally deleted.

The /"SYNC" parameter for Stacker 3.0 has a "+" sign at the end.    The "+" tells SSWAP.COM
to AUTOMATICALLY update any changed files,    such as CONFIG.SYS, that are supposed to be
on both drives. If    you delete the "+" from the "/SYNC" parameter, SSWAP.COM will only   
NOTIFY you of changes to files and ask if you want to synchronize    them.

As of Stacker version 3.0 some compatibility issues with OPTIMIZE    remained unresolved.
These issues may require some    troubleshooting as well as editing of your CONFIG.SYS and   
AUTOEXEC.BAT files.

Stacker detects the presence of OPTIMIZE and allows you to run it    without having to first
edit your CONFIG.SYS and AUTOEXEC.BAT    files. If you are using SSWAP.COM, it will detect
when OPTIMIZE is    being run, make changes to the drive references in the CONFIG.SYS    and
AUTOEXEC.BAT files, then prompt you to press a key to reboot    the machine again for
OPTIMIZE. This will occur during the    Detection and Final Phases of OPTIMIZE. Don't worry if
your    machine reboots itself several times during OPTIMIZE; this is    normal.

If you are using DOS 5 with Stacker, and you run OPTIMIZE, the    number of buffers may
disappear from the line in the AUTOEXEC.BAT    file or CONFIG.SYS file, depending on
whether or not you are    loading DOS into the HMA. To fix this problem, simply edit the   
AUTOEXEC.BAT or CONFIG.SYS file after the OPTIMIZE process is    complete and add the
number of buffers you want to the    C:\QEMM\LOADHI line in the AUTOEXEC.BAT or the
BUFFERS= line in    the CONFIG.SYS file.

 4. "INCORRECT QEMM OPTIMIZE"

Although it is not common, there may be times during OPTIMIZE when    you will receive the
message: "Incorrect QEMM Optimize". To fix    this problem, you must edit your CONFIG.SYS
file on the    UNCOMPRESSED drive and remove the line that reads:

DEVICE=C:\QEMM\RSTRCFG.SYS **** OPTIMIZE D%etection %P%hase ****

After removing the line and saving the file, reboot your machine    and re-run OPTIMIZE.

5. OPTIMIZE.EXC and SSWAP.COM

Some earlier versions of QEMM LOADHI.SYS driver may have a    conflict with Stacker's
SSWAP.COM. Although Stacker now creates    an OPTIMIZE.EXC file which tells the OPTIMIZE
program to NOT place    a LOADHI.SYS line in front of SSWAP.COM, you must make sure that a
LOADHI.SYS line is not ALREADY in front of SSWAP.COM. If it is,    you must remove it before
running OPTIMIZE.

6. STACKER WITH "/EMS" SWITCH

Stacker can put its built-in cache into EMS, which reduces the    amount of conventional
memory the STACKER.COM driver requires.    You can select this option when you are
installing Stacker on your    hard drive. If you are using the STEALTH option with QEMM,   
however, you must make sure that you have a "DBF=2" parameter at    the end of the QEMM
line. This is because when STACKER.COM uses    EMS, it accesses the disk via the EMS Page
Frame at the same time    that STEALTH is using the Page Frame. "DBF=2" buffers all disk   
read and writes that directly access the Page Frame and thus    prevents a conflict.

Stacker 3.0 should automatically place this parameter at the end    of the QEMM line for you,
but 2.01 does NOT. If you are using    Stacker 2.01, you MUST add this parameter manually.
Below is a    sample QEMM device line with the "DBF=2" parameter:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M DBF=2

7. "LOADHI: This program took over INT 67!"

If you are using STACKER.COM with the "/EMS" parameter, under    certain circumstances you
might get the above error message. To    get this message, your QEMM / Stacker
configuration has to be as    follows.

1. STACKER.COM is using the "/EMS" parameter which puts Stacker's    built-in cache
into EMS.

2. You are NOT using QEMM's "STEALTH" parameter.

3. QEMM's LOADHI.COM driver is loading, from the COMPRESSED    Stacker drive, a
driver or TSR into HIGH RAM, with the    LOADHI.SYS "SQUEEZEF" (Squeeze Frame)
parameter. "SQUEEZEF"    uses the Page Frame temporarily, to give a driver or TSR
enough    room to initialize. Since ANY driver or TSR loading from the    COMPRESSED
Stacker drive becomes an EMS user, and subsequently    uses the Page Frame at the
same time as "SQUEEZEF", the two    become incompatible. Hence, the error message
above.

To remedy this problem, you have a number of options:

1. Use QEMM with the "STEALTH" parameter. Since "STEALTH" uses    the Page Frame,
"SQUEEZEF" does NOT work with it. However, the    "SQUEEZET" (Squeeze Temp) parameter
which temporarily uses    areas of HIGH RAM to give a driver or TSR enough room to   
initialize does work.

2. If you do not want to use STEALTH, the easiest remedy is to    rerun OPTIMIZE with the
"/NF" parameter. This tells OPTIMIZE    to NOT use the "/SQUEEZEF parameter.

3. A final option would be to simply load all your drivers and    TSR's from the
UNCOMPRESSED boot drive. For instance, if you    are using Stacker with SSWAP.COM, and a
sample line in your    AUTOEXEC.BAT file looks like the following:

C:\MOUSE\MOUSE

then you must change it to read:

D:\MOUSE\MOUSE

After SSWAP.COM has swapped your drive names, the D: drive is    your UNCOMPRESSED
drive. If you are loading a driver from the    CONFIG.SYS file, and SSWAP.COM is the last line,
there is no    need to make any changes to that file.

The suggestions included in this technote should take care of most    of the problems you are
likely to encounter with either Stacker    version 2.01 or 3.0.

Return to Technotes Main Menu.

QEMM and SuperStor

Quarterdeck Technical Note #249

This troubleshooting guide is designed to help the individual    who has QEMM and SuperStor
2.04 or SuperStor Pro installed on    his or her machine and has run, or wants to run,
OPTIMIZE. If you    have not yet run OPTIMIZE, please read the General Information    section
below, then proceed to either Section 1 or Section 2    depending on if you installed QEMM
BEFORE or AFTER installing    SuperStor.

GENERAL INFORMATION

1. To avoid confusion we will refer to COMPRESSED and UNCOMPRESSED    drives whenever
possible. The COMPRESSED drive, which is    actually a very large hidden file with a drive ID,
will always    be the one that SuperStor creates to hold most of your programs    and data.

2. Since you cannot boot from the COMPRESSED drive, SuperStor sets    aside a small portion
of the UNCOMPRESSED drive to boot from.    Depending upon which version of SuperStor you
have, this    partition may or may not be easily accessed.

3. Your UNCOMPRESSED drive is always drive C: before bootup. When    the SuperStor driver
(SSTORDRV.SYS) executes during bootup it    then allows access to the large COMPRESSED
partition and gives    it the next available drive ID, usually D: This partition is    really a very
large hidden file called SSPARTSS.ADD (if you    have access to both the COMPRESSED and
UNCOMPRESSED drives, the    file will be called SSPARTSS.SWP).

4. After the SuperStor driver executes, another driver    (DEVSWAP.COM) usually follows it.
When this driver executes,    it swaps drive names so that the COMPRESSED partition
becomes    C: and the UNCOMPRESSED partition becomes D:. Basically, it is    just reversing
the drive names so that your applications will    still think that they are on drive C:

5. If you have allowed SuperStor to compress the entire hard    drive, you will not be able to
access the UNCOMPRESSED    partition after boot, unless you run a utility called   
ADD2SWP.EXE, found on your SuperStor program diskette. From    the diskette, just type :

ADD2SWP C:<Enter>

This will then give you access to both your COMPRESSED and    UNCOMPRESSED drives.

6. If you have configured SuperStor to reserve space on the    UNCOMPRESSED drive to be
accessed by a different drive ID you    will already be able to access the UNCOMPRESSED
partition    easily. You are given the option to reserve this space when you    are running the
SSTOR program to create your COMPRESSED    drive(s). In version 2.04 the default is NO. If
you press    ENTER when encountering this option SSTOR will set-up SuperStor    to compress
your whole hard drive.

7. If you have not yet installed SuperStor 2.04, Quarterdeck    recommends that you select
YES to override the default.    Beginning with SuperStor Pro version 1.0, the default is YES.   
You only have to press ENTER at this prompt. When the program    then asks you for a size to
make the UNCOMPRESSED drive enter    2048 to add two megabytes to that drive size.

8. To determine which drive is COMPRESSED or UNCOMPRESSED start    the SSTOR.EXE
program in the C:\ADDSTOR directory. Under the    heading "System Device List" will be
information pertaining to    all drives on your computer.

9. If before you installed SuperStor your hard disk drive had more    than one partition, i.e., a
C: and D: partition, SSTORDRV.SYS    will select the next available drive name for its
container    file. If you had a C: and D: partition and you COMPRESSED the    C: drive only then
your drives will be set up as follows when    SuperStor is installed:

C: becomes E: D: is still D: unless you compress that as    well. If you do compress D:, it
becomes F:

The troubleshooting guide below is based on a one-partition    drive. If your drive has
multiple partitions then you must    determine what drive C: swaps to and use the
appropriate drive    name.

10. If you are using a disk caching program with SuperStor, be    very careful to determine
whether it is compatible with    SuperStor or not. For instance Microsoft Windows' 3.1   
SMARTDRV.EXE will lock up your system upon bootup, if you load    the SSTORDRV.SYS driver
into High Ram with LOADHI.SYS. At the    time of this writing, Norton NCACHE version 6, will
not work    under any circumstances with SuperStor installed on your    machine.

BE ABSOLUTELY CERTAIN THAT YOU READ THE README.TXT FILE IN YOUR    ADDSTOR
DIRECTORY.

11. You should always have a bootable floppy diskette available    which will execute
SuperStor and give you access to your    COMPRESSED drive. To create this format a floppy
diskette    with the /S parameter so that it becomes a boot disk.

When this disk has been formatted copy the following files    from the C: drive to the floppy
diskette: SSTORDRV.SYS,    DEVSWAP.COM, CONFIG.SYS, AUTOEXEC.BAT. Once those files
have    been copied over check the contents of them. The CONFIG.SYS    file should contain at
least the following lines:
 FILES=40    DEVICE=\SSTORDRV.SYS /NOHIGH (SuperStor Pro requires /NOUMB    instead)
DEVICE=\DEVSWAP.COM

12. If you want QEMM's LOADHI.SYS driver to load SuperStor version    2.04 into High RAM
you must place the "/NOHIGH" parameter at    the end of the SuperStor device line. If you are
using    SuperStor Pro you must use the "/NOUMB" parameter instead of    "/NOHIGH."
SuperStor does not automatically place either of    the parameters on the line. The line
should read as follows:

DEVICE=\SSTORDRV.SYS /NOHIGH (SuperStor 2.04)

or

DEVICE=\SSTORDRV.SYS /NOUMB (SuperStor Pro)

The AUTOEXEC.BAT file should contain at least the following    lines:

PATH=C:\;C:\DOS;C:\QEMM;C:\ADDSTOR    PROMPT=PG

These files on the boot floppy will allow you to access your    SuperStor COMPRESSED drive
and navigate the hard drive.

Section Two: SuperStor Installed First   

If SuperStor is already installed on your hard drive and you now    install QEMM and run
OPTIMIZE then you must follow the section    below.

1. If you install QEMM and run OPTIMIZE on a system with SuperStor    already installed,
SuperStor will fail to execute during the    first reboot of the OPTIMIZE program. This is
because OPTIMIZE    places device statements on the SSTORDRV.SYS line, but the    files
necessary to complete the boot cannot be found on the    UNCOMPRESSED boot drive.

2. Since SuperStor fails to load, you will only have access to    your UNCOMPRESSED drive
after bootup. It is an easy process to    correct this situation. All you have to do is create a
new,    temporary, CONFIG.SYS file on the UNCOMPRESSED drive, now drive    C:, and then
reboot. To do this first rename the old    CONFIG.SYS file by typing:

RENAME CONFIG.SYS CONFIG.XXX<ENTER>

Now, create a new CONFIG.SYS file by typing the following:

COPY CON CONFIG.SYS<ENTER>

The cursor will now be below the "C" in COPY. Now, type:

DEVICE=\SSTORDRV.SYS<ENTER>    DEVICE=\DEVSWAP.COM<ENTER>

NOTE: IF YOU HAVE ANY OTHER DRIVERS, SUCH AS A DISK    PARTITIONER, THAT ARE
ESSENTIAL TO BOOT YOUR MACHINE INCLUDE    THOSE IN THE TEMPORARY CONFIG.SYS FILE.
IF YOU DO NEED TO BOOT    WITH A DISK PARTITIONER MAKE SURE IT LOADS BEFORE
SSTORDRV.SYS.    DON'T WORRY ABOUT ANY OTHER DRIVERS YOU MAY HAVE HAD IN THE   
ORIGINAL CONFIG.SYS FILE: ONCE YOU HAVE HAVE REBOOTED THE    MACHINE YOUR
ORIGINAL CONFIG.SYS FILE WILL BE INTACT.

Now, press the F6 key and <ENTER>. You will see the following    message:

1 file(s) copied.

3. Reboot the machine.

4. Because of SuperStor program designs the untouched CONFIG.SYS    file on the
COMPRESSED drive will automatically overwrite the    temporary CONFIG.SYS file on the
UNCOMPRESSED drive. The    contents of both CONFIG.SYS files will then be the same as   
before you installed QEMM and ran OPTIMIZE.

*********************    FULL DISK COMPRESSION    *********************

IF YOU INSTALLED SUPERSTOR TO COMPRESS YOUR WHOLE HARD DRIVE,    PROCEED TO
STEP 2 IN "OPTIMIZING WITH QEMM AND SUPERSTOR."

************************    PARTIAL DISK COMPRESSION    ************************

IF YOU INSTALLED SUPERSTOR TO COMPRESS ONLY A PORTION OF YOUR    HARD DISK DRIVE,
PROCEED TO STEP 2 IN "OPTIMIZING WITH QEMM AND    SUPERSTOR."

ONCE YOU HAVE COMPLETED STEP 2, PROCEED TO EITHER STEP 4 OR 6,    DEPENDING UPON
WHETHER OR NOT YOU HAVE LEFT ADEQUATE ROOM ON    YOUR UNCOMPRESSED PARTITION
TO HOLD ALL QEMM AND DOS FILES.

 Section Three: QEMM Installed First

If QEMM is currently installed on your hard disk drive and you now    install SuperStor, you
then need to follow the instructions in the    section below.

IMPORTANT NOTE: As of SuperStor Pro 1.0, Addstor recommends that    if you have a memory
resident program, such as a memory manager,    installed and running, you must disable the
memory resident    program BEFORE installing SuperStor. At Quarterdeck, we have    installed
SuperStor Pro successfully with QEMM running. If you    choose to follow their advice, disable
QEMM, and your memory    resident programs, by placing a REM statement at the beginning
of    the line that loads such a program.

1. After you install SuperStor you then have to run SSTOR.EXE to    do the actual
compression of your hard drive. The default of    SuperStor 2.04 is to compress all of the hard
drive space. As    of SuperStor Pro 1.0, the default is to leave a portion (the    size is specified
by the user) of the hard drive uncompressed.    No matter which version you are using, you
should make sure you    leave at least a 2 MB portion uncompressed.

2. If you accept the default of SuperStor 2.04 to compress the    whole hard disk drive or if
you override the default of    SuperStor Pro, SuperStor leaves a tiny boot partition with only   
COMMAND.COM and other system files, as well as the SuperStor    drivers resident. If QEMM
is installed when you install    SuperStor, the QEMM386.SYS device driver will be placed into   
the root directory of the boot drive.

Also, the QEMM line in the CONFIG.SYS will be changed from:

DEVICE=C:\QEMM\QEMM386.SYS RAM

to

DEVICE=C:\QEMM386.SYS RAM

3. Upon installation, SuperStor does not create a QEMM directory    on the UNCOMPRESSED
drive, nor does it copy over the pertinent    QEMM files from the COMPRESSED drive.

4. If you have accepted the default of compressing the whole    drive, the drive letter D: is
not readily accessible. How to    access the UNCOMPRESSED drive will be explained in detail
later    in this troubleshooting guide. If you have only compressed a    portion of the hard disk
drive you already have access to the    UNCOMPRESSED portion of the drive.

5. The net result of the above is that after installing SuperStor,    compressing the hard disk,
and rebooting the machine, QEMM will    execute, but any lines in the CONFIG.SYS that
precede    SSTORDRV.SYS and that have LOADHI.SYS statements will fail.    After following the
instructions below in "Optimizing with QEMM    and SuperStor" those files will then be in the
correct    directory for OPTIMIZE to perform.       

*********************    FULL DISK COMPRESSION    *********************

If you installed SuperStor to compress your whole hard disk    drive, proceed to Step 1 in
"Optimizing with QEMM and    SuperStor."

************************    PARTIAL DISK COMPRESSION    ************************

If you have installed SuperStor to compress only a portion of    your hard disk drive, proceed
to Step 1 in "Optimizing with    QEMM and SuperStor." Once you have completed Step 2,
proceed    to either Step 4 or Step 6, depending on whether you have left    adequatre room
on your uncompressed partition to hold all QEMM    and DOS files.

 Section Four: Optimizing with QEMM and SuperStor

BEFORE FOLLOWING THE STEPS BELOW MAKE CERTAIN THAT YOU HAVE READ    ALL THE
INFORMATION ABOVE PERTAINING TO THE ORDER AND METHOD USED    TO INSTALL QEMM
AND SUPERSTOR ON YOUR COMPUTER. ALSO MAKE SURE    ANY IMPORTANT FILES HAVE
BEEN BACKED UP. THIS INCLUDES BOTH THE    CONFIG.SYS AND AUTOEXEC.BAT FILES AND
ANY OTHER FILES YOU FEEL ARE    IRREPLACEABLE.

* IF YOU HAVE CONFIGURED SUPERSTOR TO COMPRESS YOUR WHOLE HARD    DISK DRIVE,
PLEASE FOLLOW THE STEPS BELOW FROM 1 TO 16. IF YOU    INSTALLED QEMM AFTER
INSTALLING SUPERSTOR YOU MAY SKIP STEP 1.

* IF YOU HAVE CONFIGURED SUPERSTOR TO COMPRESS ONLY A PORTION OF    YOUR HARD
DISK DRIVE BUT DID NOT LEAVE ENOUGH ROOM ON THE    UNCOMPRESSED PORTION TO
COPY ALL QEMM AND DOS FILES TO THAT    PORTION, PLEASE FOLLOW THE STEPS BELOW
FROM 4 TO 16.

 1. On the C: COMPRESSED drive, edit the QEMM device line in the    CONFIG.SYS file to read:

DEVICE=C:\QEMM\QEMM386.SYS RAM

Save the CONFIG.SYS file.

2. Place the SuperStor program diskette into drive A:. Log onto    drive A: and type:

ADD2SWP C: <ENTER>

The program will then report:

ADD2SWP has completed, your PC needs to be rebooted.    Press the [ENTER] key to reboot
the PC

3. Remove the diskette and press ENTER. After the computer    completes its reboot you will
then have access to both your    COMPRESSED and UNCOMPRESSED drives.

4. Start SSUTIL.EXE by typing:

SSUTIL<ENTER>

at the C: prompt, and run SHRINK DISK from within that program.    Select an amount to
shrink the COMPRESSED disk by. Quarterdeck    recommends a minimum of 1024 Kb with
2048 Kb preferred.

5. EXIT and REBOOT.

THE NEXT STEPS CAN BE FOLLOWED IF YOU HAVE CONFIGURED SUPERSTOR TO    COMPRESS
ONLY A PORTION OF YOUR HARD DISK DRIVE AND LEFT ENOUGH    ROOM FOR ALL QEMM

AND DOS FILES OR IF YOU HAVE JUST FOLLOWED STEPS    1-4.

6. Log onto drive D: the UNCOMPRESSED drive. Create a QEMM    directory by typing the
following:

CD\ <ENTER>    MD QEMM <ENTER>

7. Copy all QEMM files from the COMPRESSED drive into the QEMM    directory on the
UNCOMPRESSED drive.

8. While still on the UNCOMPRESSED drive D: create directories    pertaining to all other
drivers loading from the CONFIG.SYS    file. For example, if you have a couple of lines in your 
CONFIG.SYS file that read:

DEVICE=C:\MOUSE\MOUSE.SYS    DEVICE=C:\DOS\ANSI.SYS

then create a MOUSE directory and a DOS directory on the    UNCOMPRESSED drive. Then,
copy the MOUSE.SYS and ANSI.SYS    drivers from the CONPRESSED drive to their respective   
directories on the UNCOMPRESSED drive.

Do the same for all other drivers loading from the CONFIG.SYS file.

9. Log back on to drive C:, the COMPRESSED drive. Edit the CONFIG.SYS    file in the following
ways:

A. Move the two SuperStor device lines to the bottom of the    CONFIG.SYS file.

B. If you haven't already done so, place a blank space and the    "/NOHIGH"
parameter (for SuperStor 2.04 only) or the    "/NOUMB" parameter (for SuperStor
Pro only) at the end of    the SSTORDRV.SYS device line.

C. Place a REM and a blank space in front of the line that reads:

DEVICE=\DEVSWAP.COM

so it now reads:

REM DEVICE=\DEVSWAP.COM.

Save the CONFIG.SYS file but do NOT reboot yet.

IMPORTANT NOTE: YOU MUST PLACE THE "/NOHIGH" PARAMETER (for    SuperStor 2.04) OR
THE "/NOUMB" PARAMETER (for SuperStor Pro) AT    THE END OF THE \SSTORDRV.SYS DEVICE
LINE TO ALLOW OPTIMIZE TO    SUCCESSFULLY LOAD THE DRIVER INTO HIGH RAM. THE SIZE
OF THE    DRIVER, SSTORDRV.SYS, CAN VARY WHEN IT IS LOADED INTO HIGH RAM.    THE
LARGEST SIZE WE HAVE SEEN AT QUARTERDECK IS 71K.

10. Still on the COMPRESSED C: drive, edit the AUTOEXEC.BAT file    and reverse all drive
designations from C: to D: or D: to C:.    For example if a line reads:

C:\MOUSE\MOUSE

change it to read:

D:\MOUSE\MOUSE

Make sure you also reverse the drive designations in your path    statement, i.e.,

PATH=C:\;C:\DOS;C:\QEMM;C:\ADDSTOR

becomes:

PATH=D:\;D:\DOS;D:\QEMM;D:\ADDSTOR

If you are using the CALL command to CALL batch files from the    AUTOEXEC.BAT file, make
sure that the drive designations in    the CALLed batch file are also reversed. For instance, if
you    have a line in your AUTOEXEC.BAT file that reads:

 @CALL C:\NETWORK\LOADNET.BAT

and logs you onto a network make sure you reverse the drive    designations in both the
above line and in the batch file    LOADNET.BAT.

11. Save the AUTOEXEC.BAT file and copy to the D:\ drive.

12. Reboot the computer.

13. Run OPTIMIZE.

14. After OPTIMIZE is complete edit the CONFIG.SYS file on the    UNCOMPRESSED drive and
remove the REM and blank space in front    of the DEVSWAP.COM device line. It's very
important that you    edit the CONFIG.SYS file on the UNCOMPRESSED drive which will    be C:.
After editing save the file and copy it to the    COMPRESSED D: drive by typing:

COPY C:\CONFIG.SYS D:\ <ENTER>

15. Edit the AUTOEXEC.BAT file on the UNCOMPRESSED C: drive and    once again reverse
the drive designations. Be very careful    that you find ALL drive designations. Some lines
may have    more than one drive designation in the same command so watch    out for that.

After editing the AUTOEXEC.BAT file on the UNCOMPRESSED C:    drive save and copy it to
the COMPRESSED drive D:.

16. The OPTIMIZE process is now complete. Reboot the computer    which will once again
swap your drive names and your work is    done.

Return to Technotes Main Menu.

QEMM and XtraDrive

Quarterdeck Technical Note #199

XtraDrive is a disk compression program published by Integrated Information Technology.
While this program is generally compatible with QEMM, some    issues must be addressed.
Below are some of the most frequently asked    questions about XtraDrive and QEMM.

STEALTH ROM:

Q: When I try to install XtraDrive on a system that has QEMM and Stealth    ROM
running, I get the following error message:

"Drive 1 is being controlled by a program that appropriates INT13. You
cannot install XtraDrive on this drive."

What do I have to do to fix this?

A: Remove the StealthROM parameter (ST:M or ST:F) from the QEMM device    line and try to
install XtraDrive again. You should only need to do this    during the installation of XtraDrive.
Once XtraDrive is installed, you can    restore the StealthROM parameter.

Q: So, I can use XtraDrive with QEMM's StealthROM parameter?

A: Under most circumstances, StealthROM works fine with XtraDrive, but if    you are using
the XtraDrive EMS cache you cannot use either of QEMM's    StealthROM parameter (ST:M or
ST:F). The XtraDrive EMS cache accesses the    disk via the page frame and this causes a
conflict with StealthROM.    Normally, if a program accesses the disk via the page frame,
QEMM's DBF=2    parameter will fix the problem. This is not possible with XtraDrive. The   
EMS cache will also cause problems with drivers such as EMSNETX.COM and    Microsoft's
MOUSE.COM using EMS.

Q. Are there any other possible conflicts with XtraDrive and QEMM's    StealthROM
parameter?

A. Under certain rare circumstances you may need to exclude a 4K region in    the system
ROM BIOS area. If, after installing XtraDrive and QEMM with the    StealthROM parameter,
you get an Exception 13 or lockup you should refer to Technical Bulletin #205,
STEALTH.TEC. This technote will help you determine    which area must be excluded. Keep
in mind, however, that the need to exclude    the 4k block of High RAM is very rare.

    EXCLUDES:

Q: When I install QEMM on a system that has XtraDrive currently installed,    I get
a lockup or Exception 13 when I reboot the machine, loading QEMM.    What do I
have to do to allow me to boot the system?

A: Simply reboot the machine and when it beeps after checking the memory,    hold down
the ALT key until prompted to press ESC to unload QEMM. (If you    are using QEMM    DOS-UP
feature, you will first be prompted to press ESC to    unload DOSDATA.) Once you have
unloaded DOSDATA and/or QEMM, load your    CONFIG.SYS file into a text editor. If you have
MS-DOS 5 or MS-DOS 6, you    may load the DOS Editor, by typing EDIT C:\CONFIG.SYS and
<ENTER>. At the    end of the QEMM device line, place the following parameter: X=9000-

9FFF.

A sample QEMM device line would then read as follows:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M X=9000-9FFF

After adding the parameter, simply save the CONFIG.SYS file and reboot your    machine.

Q: When I installed XtraDrive after QEMM, XtraDrive placed an exclusion    from
8000-A000 on the QEMM device line. Do I need this exclusion and    will it take
away any memory from my system?

A: Given the way that XtraDrive is currently designed, an exclusion is    needed. If you are
using DESQview or DESQview/X, the exclusion will tell    QEMM to not map memory into that
area, so the amount of memory available to    each DESQview window will be smaller. There
are a couple of things you can    do to increase your window size if you are using DESQview
or DESQview/X:

1. The default exclude is 8000-A000, a 128K block. Our testing has    determined that
usually an exclusion of 9000-9FFF will be sufficient.    This will decrease your window
size by only 64K. If you are using the    CONVENTIONAL MEMORY disk cache, and have
selected more than two 16K    blocks of conventional memory, you will need to
change the exclude back    to 8000-9FFF.

or

2. Load the XtraDrive driver BEFORE QEMM and take the exclude off the QEMM   
device line. This should decrease your window size by only about 46K.    Once again, if
you are using the CONVENTIONAL MEMORY disk cache, your    driver size will increase
with each 16K block you add. The default is    one 16K block. If you select two blocks,
your driver will be 66K. If    you select three it will be 82K. The maximum, four 16K
blocks will    result in a 98K driver. Your DESQview and DESQview/X window sizes will   
decrease accordingly.

BUS-MASTERING:

Q: If I have a SCSI bus-mastering controller, can I load the XtraDrive    device
driver into High Ram?

A: No. Even with double buffering, on a system with a SCSI bus-mastering    device you will
not be able to load XtraDrive into High Ram. This is NOT a    memory manager issue, but a
limitation of XtraDrive.

Return to Technotes Main Menu.

QEMM and the EMS Page Frame
Most programs that use expanded memory (EMS) access up to 64K of expanded memory at
a time (in 16K units called pages) at a special area of upper memory called the page
frame. An expanded memory manager (QEMM) makes memory from outside the first
megabyte of memory appear in the page frame.

QEMM's installation normally reserves 64K of upper memory for use as a page frame. You
can use QSETUP to specify that no page frame should be used; however, we strongly
recommend that you do NOT do this.    See the technote "Why the EMS Page Frame is
Important" (FRAME.TEC).

The following applications use (or can be configured to use) expanded memory:

Applications

Networking Software

Utilities

Disk Caches

Games

Return to Hints Main Menu.

QEMM with MS-DOS 5.0

Quarterdeck Technical Note #200

 Q. Is QEMM compatible with DOS 5?

 A. The shipping versions of all Quarterdeck products are compatible with IBM and Microsoft
DOS 5.

 DOS 5 contains a number of enhancements over previous versions. Among the most
notable features is more advanced memory management--specifically, the ability to create
and use regions of upper memory above 640K. These regions can be used for loading
resident programs, drivers, and parts of DOS itself.

 In many ways the facilities for managing memory that are built into DOS 5 are similar to
those first made available to users of DOS 2.x through 4.x with the release of QEMM version
4.1 in the spring of 1988. QEMM, now at version 8, has evolved considerably from that
original product, incorporating improvements with each new version. These improvements
have progressively resulted in more available memory for the user, higher reliability and
enhanced ease of use.

 While the memory management features of DOS 5 represent an advance for DOS,
Quarterdeck's memory managers still provide significant advantages for DOS 5 users.

 Q. What advantages do Quarterdeck's memory managers have over DOS' memory
managers?

 A. The differences between the current release of Quarterdeck memory managers and
those built into DOS 5 are as follows:

 1) The combined size of DOS 5's memory managers (HIMEM.SYS and EMM386.SYS) is 8 to
10K. QEMM provides the facilities of both these drivers in less than 1K!

 2) QEMM typically provides 96K MORE High RAM by default than the DOS 5 memory
managers on non-PS/2 systems, and 128K MORE by default on PS/2 systems. The DOS 5
memory manager allows these areas to be included manually, but this requires some
expertise.

 3) QEMM's Squeeze technology allows larger resident programs to be loaded by allowing
them to squeeze--temporarily--into the EMS page frame or areas used by Adapters when
loading. The DOS 5 memory managers do not provide a similar feature.

 4) Using its Stealth option, QEMM can provide EVEN MORE high RAM (211k total is common)
by hiding machine ROMs and allowing High RAM to be mapped over them. Neither DOS 5's
memory managers nor any other third-party memory manager currently provides this
patent-pending technology.

 5) DOS 5 has no equivalent to Quarterdeck's Manifest program. Manifest is a memory
analysis program included free with QEMM, DESQview, and DESQview 386. It provides
extensive information about the computer on which it is running and is an invaluable tool
when optimizing a system or diagnosing a memory problem or conflict.

 6) The DOS 5 memory manager provides no program to automatically and OPTIMALLY load
TSR's and device drivers into the regions of upper memory. Novice users may experience

considerable difficulty achieving good results from the DOS 5 LOADHIGH program, but even
advanced users will appreciate the speed and accuracy with which OPTIMIZE sets up a
system.

 7) The DOS 5 memory manager provides no Analysis feature. QEMM's Analysis is extremely
useful in determining areas of upper memory that can safely be used. Analysis also lets
QEMM users reclaim unused addresses in the system ROM and in other areas in upper
memory--a great advantage to memory-hungry users.

 8) The DOS 5 memory manager cannot map ROMs into faster RAM. QEMM provides this
option which can result in substantially better performance, especially where screen update
speed is important.

 9) The DOS 5 memory managers have no option to sort memory. On machines where some
sections of memory run slower than other sections, QEMM can sort the memory so that the
fastest memory is used first.

 10) The DOS 5 memory manager cannot manage ShadowRAM or Top Memory, a feature
QEMM users on limited-memory systems depend heavily upon. Many 1MB systems turn
384K of the first megabyte of memory into ShadowRAM or Top Memory. This memory is
unavailable when using the DOS 5 memory managers.

 11) Microsoft Windows 3.x Standard mode won't run under the DOS 5 memory manager
when the memory manager is active (in virtual 8086 mode), for example when using a disk
cache. QEMM is the only currently shipping memory manager that can run Windows 3.x in all
modes whether or not QEMM is active.

 12) The DOS 5 memory manager provides no control over the region of High RAM that can
be used to load programs high. This means that even expert users may be unable to use
High RAM efficiently in situations where TSR's and drivers must be loaded in a specific order.
The Quarterdeck LOADHI programs allow TSR's or drivers to be directed to specific high
memory locations, giving complete control to the user. Of course, as mentioned before, this
feature is used expertly by the OPTIMIZE program in order to provide the optimum
configuration.

 13) On PS/2s and other microchannel systems, QEMM can automatically detect the
addresses used by any adapter listed in our MCA.ADL file. This is especially valuable on
systems with adapter RAM (used by many network cards, among other adapters). Adapter
RAM can be particularly hard for 386 memory managers to detect. The DOS 5 memory
manager has no such feature. As the addresses used by network cards vary from machine to
machine and card to card, QEMM's MCA.ADL file can save considerable work for network
administrators in companies with large installations of PS/2s or micro channel compatibles
on networks. Users of PS/2 machines that are not on a network will also benefit from this
"ease of use" feature.

 14) DOS 5 has no equivalent for the VIDRAM utility that allows users to extend conventional
memory on EGA/VGA systems when running programs that are not using EGA/VGA graphics.

 15) The DOS 5 memory manager is less flexible for configuring expanded (EMS) memory.
Many DOS programs support EMS memory; others use XMS. To have both types of memory,
the DOS memory manager requires you to divide extended memory, part as EMS, part as
XMS. To change the amounts available you must edit your CONFIG.SYS file and reboot.
QEMM allows EMS and XMS to "share" extended memory. With QEMM, applications can use
up to the maximum amount of memory available as EMS, XMS, or a combination of the two
without editing configuration files or rebooting the system.

 16) QEMM is required for full support of Quarterdeck's DESQview. While DESQview can run
with the DOS 5 memory managers, as it can with other EMS drivers, only by using QEMM can
you get the special features of DESQview that provide for memory protection and the multi-
tasking of "ill-behaved" DOS programs. In addition, QEMM moves more of DESQview's data
out of conventional memory, resulting in larger DV windows.

 17) QEMM now supports the Suspend and Resume features of some portables and
notebook computers that these computers use to minimize battery drain.

 Q. How can I install DOS 5 on a system already running QEMM?

 A. If you are installing DOS 5 on a system that already has QEMM installed, simply leave the
Quarterdeck memory managers in place and run the DOS SETUP program. SETUP will detect
that a compatible memory manager is installed and will not replace it. SETUP typically
makes two or three changes to your CONFIG.SYS file. First, it places a "DEVICE=SETVER.EXE"
statement at the beginning of your CONFIG.SYS file (before the QEMM device line.) You may
want to move this line below QEMM so that Optimize will load it into upper memory. Second,
it puts the line "DOS=HIGH" at the end of the CONFIG.SYS. Third, it puts a
"SHELL=COMMAND.COM" statement in the CONFIG.SYS if you do not already have one.

 Once you have installed the DOS 5 upgrade, switch to your QEMM directory and run the
OPTIMIZE program. Since the installation of DOS 5 will change your memory configuration,
running Optimize will take care of any rearrangement of programs in upper memory that is
necessary, giving you the most conventional memory possible.

 If you are running DESQview, you should Optimize with the /STEALTH option, even though
Optimize may not suggest it automatically. DESQview can take advantage of the extra
memory provided by StealthROM.

 Also, in most cases, DESQview users car run larger programs memory in their DOS windows
by removing the "DOS=HIGH" from the CONFIG.SYS file. This allows DESQview to use the
High Memory Area (HMA) that DOS would otherwise use. DESQview is more efficient at using
the HMA than DOS, so giving DESQview the HMA usually results in more memory in your
DESQview window. The only way to be sure which is better is to try it both ways (running
Optimize and then running DESQview's Memory Status program with each configuration) to
determine which provides the most memory.

 Q. How do I install QEMM on a DOS 5 system?

 A. If you are installing QEMM onto a system that already has DOS 5, simply put the
distribution disk in your floppy drive and run the INSTALL program. The INSTALL routines are
fully aware of DOS 5 and will automatically run the Optimize program to configure the
system optimally. There is no need to do any "pre-configuration" to the system or to remove
any of the DOS 5 memory management utilities. If the StealthROM feature is needed to get
your resident programs loaded into upper memory, StealthROM will be offered automatically
by the Optimize program.

 As suggested above, if you are running DESQview you can force the StealthROM feature by
running OPTIMIZE /STEALTH, since DESQview can use the extra memory provided by
StealthROM.

 Q. I run Microsoft Windows in Enhanced Mode. Is there anything I need to know?

 A. If you will be running Microsoft Windows in Enhanced mode and plan to use the

DOS=HIGH parameter, you cannot use QEMM's "EXT=" or "MEM=" parameters. When these
parameters are used, Windows cannot properly take over management of the High Memory
Area and will fail to start in Enhanced mode. These parameters do not affect operation in
Real or Standard modes, as QEMM remains in control of memory when those modes are
used. Further information concerning Windows 3.x and Quarterdeck products can be found in
our technotes specific to Windows.

Return to Technotes Main Menu.

QEMM with MS-DOS 6.x

Quarterdeck Technical Note #166

Q. Is MS-DOS 6 compatible with QEMM?

A. Absolutely! The Microsoft DOS 6 README.TXT file states that    "Quarterdeck's QEMM
memory manager is compatible with MS-DOS    6." In addition, there are no known
incompatibilities between    MS DOS 6.0 and Quarterdeck's DESQview or DESQview/X   
multitaskers.

Q. As a QEMM user, what information do I need to install DOS 6?

A. As a QEMM user, the most important information that you can    take with you in the
installation and configuration of    Microsoft DOS 6 is the knowledge that you are already
running    the most effective memory management system available for the    IBM-compatible
computer. If you are already using QEMM, follow    these steps:

1) Run the SETUP program from the DOS 6 installation diskette    and follow the instructions
on the screen.

2) Install any of the new DOS 6 utilities that you desire. DOS    6 provides you the
opportunity to add virus protection and    other utilities to your system. Remember: the
default    installation of DOS 6 installs only the MS Windows versions    of these utilities; you
have to tell it to install the DOS    versions as well. This is done on the Utilities screen of    the
SETUP process.

3) Run QEMM's OPTIMIZE to load those drivers into Upper Memory.

If you should desire to experiment with Microsoft DOS 6's    MemMaker (the program that
attempts to provide more memory),    we can recommend a couple of safeguards. MemMaker
will    remove ALL the QEMM commands from your CONFIG.SYS and    AUTOEXEC.BAT files
(with the exception of DOSDATA.SYS and    DOS-UP.SYS, which you would have to remove
manually). We    are confident that you will want to return to Quarterdeck's    QEMM, so we
urge you to save a copy of your CONFIG.SYS and    AUTOEXEC.BAT files. Before you begin to
experiment, copy    these files from the root directory to some other directory    or to a floppy
diskette. This will allow you to restore them    easily.

Our customers have reported problems related to running    MemMaker on multi-path
CONFIG.SYS files. Unlike QEMM's    OPTIMIZE and QSETUP programs, MemMaker does not
offer a    multi-CONFIG menu.

Next, be aware that even if you save the configuration    created by MemMaker, you can
usually reverse its changes by    running MEMMAKER /UNDO. If the final screen of the
MemMaker    process is NOT a numerical breakdown of how MemMaker got you    more
memory (and every test that we have run says it will    not be), select the default exit by
pressing the <ENTER>    key. Do NOT press F3 to save the current MemMaker    configuration.

Note that MemMaker does NOT handle CALLed batch files. A    CALLed batch file is executed
with the DOS keyword "CALL"    which tells DOS to execute the commands in the "CALLed"   
batch file and then resume executing the remaining commands    in the current batch file
(the AUTOEXEC.BAT in this case).    The significance of this is that Quarterdeck's Optimize   
process DOES handle CALLed batch files, loading any TSR's in    those batch files into Upper

Memory instead of just ignoring    them. This means that when MemMaker deletes the QEMM 
commands from the AUTOEXEC.BAT and CONFIG.SYS, it leaves    them in the Optimized,
CALLed batch files. These would have    to be removed by editing the CALLed batch files and
deleting    the LOADHI information. If NO changes have been made since    the last time that
you Optimized your system, you could also    run UNOPT.BAT. UNOPT is a batch file, created
by Optimize,    that returns your system to the condition it was in before    the most recent
Optimize. If you have Optimized more than    once, use the OPTIMIZE /RESTORE parameter
instead; this    allows you to restore any of your last nine configurations,    or the pre-QEMM
configuration.

With the greater selection of features in QEMM and Optimize,    MemMaker does not stand a
chance of creating more upper    memory. QEMM's StealthROM feature adds 96K of Upper
Memory,    64K more than MemMaker's best attempt to find unused space    in your System
BIOS. Optimize has the ability, through    Quarterdeck's Squeeze technology, to shoehorn
TSR's and    device drivers into areas that are large enough for them to    reside, but too small
for them to initialize. (It is common    for drivers and resident programs to require larger
areas    during initialization than they need once they have loaded.)    Optimize has a "What-
If" feature that lets you see the    effect that rearranging the loading order of your programs   
and drivers will have on your memory usage WITHOUT making    any changes to your
configuration. None of this is possible    with MemMaker.

Q. Are any of my Quarterdeck products affected by DoubleSpace (or   
DriveSpace)?

A. The most talked-about feature of Microsoft DOS 6 is    its disk compression -- DriveSpace
in DOS 6.22; DoubleSpace in    earlier releases of DOS 6. Both DoubleSpace and DriveSpace   
were designed to be compatible with QEMM. Disk compression    utilities, including Stacker,
XtraDrive, and now DoubleSpace,    have gone to great lengths to be compatible with
StealthROM as    well as Optimize.

(In the following paragraphs, DBLSPACE is used to refer to    DBLSPACE or DRVSPACE.)
DBLSPACE.BIN is a driver that allows    your system to recognize your DoubleSpace drive. It is
loaded    by IO.SYS during boot time, BEFORE DOS has even thought about    loading QEMM.
DBLSPACE.BIN uses about 43K of your memory, and    when the CONFIG.SYS has completed,
the memory used by the    resident portion of DBLSPACE.BIN appears to be added to the   
memory used by the LAST driver loaded in the CONFIG.SYS. In    other words, the last driver
loaded appears to be 43K larger    than it actually is. When you install DoubleSpace, the   
following line is added to your CONFIG.SYS file:

DEVICE=C:\DOS\DBLSPACE.SYS /MOVE

DBLSPACE.SYS has only one purpose, and that is to make    DBLSPACE.BIN appear as a "real"
driver, separate in memory.    DoubleSpace REQUIRES that DBLSPACE.SYS be loaded in order
for    any memory manager to load DBLSPACE.BIN into upper memory.

QEMM 8 includes a feature called "Stealth D*Space," which    moves the DoubleSpace driver
out of conventional or upper    memory and maps it into the expanded memory Page Frame
whenever    it is needed. By using Stealth DoubleSpace you save    approximately 41K of
memory. If DoubleSpace is installed on    your system when you install QEMM, the following
line will be    added to your CONFIG.SYS file:

DEVICE=C:\QEMM\ST-DSPC.SYS

If you install DoubleSpace AFTER installing QEMM, you should    run QEMM's QSETUP program
(by typing QSETUP at the DOS prompt).    QSETUP will remove the DBLSPACE.SYS line in your

CONFIG.SYS and    replace it with the ST-DSPC.SYS line shown above.

The Stealth D*Space feature, like the StealthROM feature,    requires the presence of an EMS
page frame. If you have used    QEMM386.SYS's FRAME=NONE; FRAMELENGTH=0, 1, 2 or 3;
or EMS:N    parameter to eliminate the page frame, the ST-DSPC.SYS program    will act
exactly like the DOS 6 driver DBLSPACE.SYS with its    /MOVE parameter: in other words, it
will move DBLSPACE.BIN from    the top of conventional memory to low conventional
memory. If    you choose to leave ST-DSPC .SYS in your CONFIG.SYS file    without a page
frame, you can use O ptimize to load the    DoubleSpace driver into High RAM, just as you
could with    DBLSPACE.SYS /MOVE.

Q. How can I restore my QEMM configuration after MemMaker has    removed
QEMM from my CONFIG.SYS and AUTOEXEC.BAT files?

A. The steps that you must follow in order to return to QEMM after    running MemMaker
depend on whether you have:

1. Not yet completed MemMaker.

or   

2. Have completed MemMaker.

For the Number 1's who have not yet completed MemMaker:

When MemMaker completes and DOES NOT provide a better    configuration than the one
you already had, it will tell you    "Your computer's memory was optimally configured before
you ran    MemMaker". At this juncture you can press <ENTER> to restore    your original
configuration or F3 to save the MemMaker    configuration. Your choice at this time will be
<ENTER>. Your    existing QEMM configuration will be restored.

For the Number 2's who have completed MemMaker:

Since you have completed the MemMaker process, it has probably    become evident to you
that nothing provides more upper memory    for loading your TSR's and device drivers than
QEMM. Just type    QSETUP from the DOS prompt. QEMM's QSETUP program will remove   
HIMEM.SYS and EMM386.EXE from your CONFIG.SYS file and replace    them with a
QEMM386.SYS device line. From the QSETUP menu you    can also enable other options (such
as QDPMI and DOS-UP.) Once    QSETUP has enabled the options you choose, run QEMM's
Optimize    program to load your device drivers and TSR's into upper    memory. That is all
there is to it.

Q. MemMaker does not support multi-path CONFIG.SYS files. Does QEMM support
this DOS 6 feature?

A. Yes -- much better than DOS 6's memory management programs.

DOS 6 provides the ability to build menus of configurations in    the CONFIG.SYS and
AUTOEXEC.BAT. This is accomplished by    building "blocks" in the CONFIG.SYS, and having
the name of the    block selection that you make on boot passed to the    AUTOEXEC.BAT as
an environment variable -%config%. The use of    the environment variable, for IF's and
GOTO's, will then    process a particular portion of the AUTOEXEC.BAT file that is    appropriate
to that portion of the CONFIG.SYS.

Multiple configurations (as implemented via the CONFIG.SYS    blocks) have to be

MemMakered one configuration at a time. The    DOS 6 documentation discusses the process
of converting your    CONFIG.SYS and AUTOEXEC.BAT into multiple copies and then   
MemMakering them one at a time. Microsoft warns users to avoid    [common] blocks and
"first entries" in the AUTOEXEC.BAT.

If you are using QEMM however, you will find the process of    Optimizing a multi-config
system much easier than with    MemMaker. QEMM's Optimize program handles multiple   
configurations with ease. When you run Optimize, it will    detect any multiple configurations
you have set up and will    post a message prompting you to choose the CONFIG.SYS   
configuration you want to Optimize. (If Optimize is launched    automatically by the Install
program or by QEMM Setup, these    programs will also detect multiple configurations and
pass the    information along to the Optimize program.) Optimize will then    execute normally,
booting the system with the configuration    that you have chosen.

When you are not using multiple configurations, Optimize places    the /R:n (REGION:n)
parameter on lines that load TSRs and    device drivers to specify which High RAM region the
driver or    TSR will load into. When you are using multiple    configurations, instead of placing
/R:n parameters on the    QEMM386.SYS and LOADHI lines, Optimize will place /RF   
(/RESPONSEFILE) parameters. The /R:n parameters would not work    in a multiple
configuration situation, because a program might    be part of two or more CONFIG.SYS
configurations, each    requiring a different region number.

The /RF parameter gets around this problem by directing    QEMM386.SYS and the LOADHI
programs to look in a resource file    called LOADHI.RF that Optimize has created in the \
QEMM    directory. (Optimize places a LOADHIDATA environment variable    in the CONFIG.SYS
file that tells QEMM386.SYS and the LOADHI    programs the name and location of this
resource file.)    LOADHI.RF will contain several "config blocks," each    corresponding to a
CONFIG.SYS configuration and containing the    appropriate /R:n statements for that
configuration.    QEMM386.SYS and the LOADHI programs check the current CONFIG   
environment variable (created at boot time by DOS 6 to indicate    which CONFIG.SYS
configuration is being used), and then choose    the appropriate config block to get
information about what High    RAM region they should use to load high.

Here is an example of a resource file:

[Vanilla]   
QEMM386.SYS /R:1   
C:\DOS\SETVER.EXE /R:1   
C:\DOS\COMMAND.COM /R:1

[Development]   
QEMM386.SYS /R:1   
C:\DOS\SETVER.EXE /R:1   
C:\QEMM\QDPMI.SYS /R:1   
C:\DOS\COMMAND.COM /R:1

[Full]   
QEMM386.SYS /R:2   
C:\DOS\SETVER.EXE /R:3   
C:\QEMM\QDPMI.SYS /R:3   
C:\DOS\COMMAND.COM /R:2   
C:\PCKWIK\SUPERPCK.EXE /R:2   
C:\NET\IPX.COM /R:1   
C:\NET\EMSNETX.COM /R:2

[All Others]   
QEMM386.SYS /R:1   
C:\DOS\SETVER.EXE /R:1   
C:\QEMM\QDPMI.SYS /R:1   
C:\DOS\COMMAND.COM /R:1   
C:\PCKWIK\SUPERPCK.EXE /R:2

In this example, the blocks named Vanilla, Development, and    Full will be used only when
you choose their names off the menu    that DOS 6 offers when you boot with multiple
configurations.    The All Others section will be used only if none of the blocks    before it were
chosen. If you place a line before the first    block, it will be used no matter what
configuration name you    choose.

This file format is also supported by QEMM's parameter files    (see Chapter 7 of the QEMM
manual for information) and by the    DOS-Up resource file DOS-UP.DAT, which the driver
DOS-UP.SYS    uses to determine where different parts of DOS go in High RAM.    Normally, you
do not need to edit these files yourself.    Optimize creates and maintain the files.

Q. What else is Quarterdeck doing for DOS?

A. Quarterdeck's commitment to adding functionality to DOS and    DOS-based programs has
kept our products at the forefront of    memory management and multitasking technology.
With each new    version of DOS comes an opportunity for Quarterdeck to design    new
features and offer the DOS user an even greater    implementation of the world's most widely
used operating    system. Quarterdeck intends to continue this pattern.

Return to Technotes Main Menu.

QEMM with Novell DOS and DR-DOS

Quarterdeck Technical Note #269

All shipping versions of Quarterdeck products are essentially compatible with Novell DOS 7
and Digital Research's DR-DOS 6, alternative versions of DOS to Microsoft and IBM DOS
offerings. There are, however, a few configuration issues that will be addressed in this note.
In the first section, Novell DOS 7 issues are addressed; in the second DR-DOS 6 is discussed,
and in the third, notes pertaining to both versions detail QEMM's advantages over the Novell
DOS memory managers. We recommend strongly that you read all of the section pertaining
to your version of DOS before installing QEMM and running the OPTIMIZE program.

For the purposes of this note, "Novell DOS" will be used to denote either DR-DOS 6 and
Novell DOS 7; when there is a distinction between the two, the name of the operating
system will be specified in full. Note that Novell DOS 7 is an updated version of DR-DOS 6,
and contains significant and worthwhile new features. Some of these features make using
QEMM much easier on Novell DOS systems, and while not disparaging DR-DOS 6,
Quarterdeck would not discourage DR-DOS 6 users from considering an upgrade to Novell
DOS 7.

Part One: Novell DOS 7

Q. Novell DOS 7 promises better memory management than other versions of
DOS. Is QEMM useful on Novell DOS 7 systems?

A. While the memory management features of Novell DOS 7 represent an advance for DOS,
Quarterdeck's memory managers still provide significant advantages for Novell DOS 7 users.
These advantages are detailed at the end of this note.

Q. Novell DOS provides a DPMS driver. What is DPMS?

A. DPMS stands for "DOS Protected Mode Services". Effectively, this is a memory
management specification of the same genre as EMS, XMS, VCPI, and DPMI, but is different
from all of these. DPMS allows several of the utilities that come with Novell DOS 7 to load
into extended memory, reducing conventional memory overhead. DPMS does not conflict
with any of the memory management specifications offered by QEMM; in fact, DPMS
allocates its memory from QEMM's memory pool.

In the earliest versions of Novell DOS 7, the DPMS driver (DPMS.EXE, version 1.0 and 1.1)
would not work properly when loaded high by any memory manager. Updates to Novell DOS
7 are available on CompuServe (GO NETWARE) and from Novell. The initialization size of
DPMS.EXE is very large in these updated versions; thus DPMS.EXE can never be loaded high
and will work properly in all cases. The size of the driver is only 2K, so this will not have a
significant impact on conventional memory, but will greatly reduce the DOS memory
overhead of DPMS-aware device drivers and TSRs.

If you have a version of DPMS.EXE version 1.1 or earlier, you should strongly consider an
update. If you cannot arrange to acquire an update, place the line

DPMS

in the OPTIMIZE.NOT file before running OPTIMIZE. Consult your QEMM manual for
information on OPTIMIZE.NOT.

Q. How do I install Novell DOS 7 on a machine that is already running QEMM?

A. Novell DOS 7 may have problems installing properly if COMMAND.COM is loaded into
upper memory. Before installing Novell DOS 7, please take the following precautionary steps
to ensure that QEMM's DOS-Up feature is configured to load the command processor low:

1) At the DOS prompt, type QSETUP.

2) When the QEMM Setup welcome screen appears, press Enter.

3) At the QEMM Setup Options menu, type U to select Enable or Disable DOS-Up.

4) At the Enable or Disable DOS-Up menu, type P to select Partial.

5) At the DOS Up Options menu, type 2 until the word No appears after COMMAND.COM.
Then press Enter.

6) At the QEMM Setup Options screen, press S to select Save Configuration and Quit.

7) You will be prompted to run Optimize. Follow the prompts on the screen.

When Optimize completes, you can run the Novell DOS 7 installation. The installation
program will detect that a compatible memory manager (QEMM) is already installed and will
not replace it. Follow the procedures outlined for you in the Novell DOS 7 Installation Guide.

Q. How do I install QEMM and run OPTIMIZE on a Novell DOS 7 machine?

A. If you are running the Novell 7 Taskswitcher or Multitasker, shut down all of your
programs and exit Task Manager before installing QEMM. Put the QEMM distribution disk in
your floppy drive and run the INSTALL program as instructed in the QEMM manual.

Before running OPTIMIZE, ensure that the DPMS driver is in OPTIMIZE.NOT as noted above.

Q. Is the QEMM DOS-Up feature compatible with Novell DOS 7?

A. Yes. The DOS-Up feature has been compatbile with Novell DOS 7 since QEMM 7.04. There
are a couple of differences between DOS-UP on MS- or PC-DOS systems and DOS-Up under
Novell DOS 7:

- The line DEVICE=C:\QEMM\DOSDATA.SYS appears at the beginning of the CONFIG.SYS file
on MS-DOS and IBM DOS systems to prepare the loading of the DOS kernel's data segment
into upper memory. On Novell DOS 7 systems, the DOS data segment remains low, so
QSETUP does not insert the DOSDATA.SYS line. If DOSDATA.SYS exists in your CONFIG.SYS
file, it may be removed. It uses no memory and it will do no harm if you leave it in.

- The SHELL statement in CONFIG.SYS will not contain QEMM's LOADHI command, which is
used to load COMMAND.COM into upper memory on MS-DOS and IBM DOS systems only. On
Novell DOS 7 systems, DOS-Up does not load COMMAND.COM into upper memory.

Q. Are there any considerations for NWCache?

A. NWCache, Novell DOS 7's disk cache utility, defaults to loading its 16k lookahead buffer
into conventional memory. If you need to free more conventional memory for your programs,
you may want to use the /BU or /BE parameters on NWCache, which will load the look ahead
buffer into either Upper or Expanded memory. If you have a system with a SCSI hard drive,

you may need to keep the buffer in conventional memory.

Q. Can I use the INSTALL= and HIINSTALL= commands in CONFIG.SYS?

A. Novell DOS's INSTALL and HIINSTALL commands are incompatible with DOS-Up. If you are
using either of these commands in your CONFIG.SYS file to load programs, load the
programs from AUTOEXEC.BAT instead.   

Novell DOS 7 can load the command processor into upper memory (High RAM). The
command processor's presence in upper memory may cause OPTIMIZE to miscalculate the
amount of High RAM available at the end of the boot process. You can prevent such
problems by adding the /MH parameter to the command processor line in CONFIG.SYS. For
example:

SHELL=C:\COMMAND.COM /P /MH

The /MH parameter causes the command processor to load into the HMA or conventional
memory, depending on other configuration options you may have set, which avoids any
potential conflict with OPTIMIZE.

NOTE:    If you are using Quarterdeck's DESQview or DESQview/X, please skip the following
step which tells you how to free up conventional memory by loading parts of DOS into the
HMA. We suggest that DESQview and DESQview/X users not do this because these products
can make more efficient use of the HMA than DOS can.)

You can have Novell DOS relocate the DOS kernel into the HMA, freeing space in
conventional memory for DOS applications. We recommend that you do this unless you are
using DESQview or DESQview/X. To load the parts of DOS into the HMA, add the following
line anywhere in your CONFIG.SYS file:

DOS=HIGH

To get the most free conventional and upper memory, if you use DOS=HIGH to load parts of
DOS into the HMA, put the command processor there as well. See step 2 above.

For DESQview and DESQview/X Users Only:
Various Novell DOS 7 utilities, including SHARE and NLSFUNC, will put themselves into the
HMA by default, even if the DOS=HIGH statement is not present in CONFIG.SYS. This will
prevent DESQview and DESQview/X from using the HMA, which will almost always result in a
decrease in the size of DESQview and DESQview/X windows. To prevent SHARE and
NLSFUNC from using the HMA, give them one of the following parameters: /MU (which loads
the program into upper memory) or /ML (which loads the program into conventional
memory). The following example loads SHARE into upper memory:

SHARE /MU

Consult your Novell DOS 7 manual or the online documentation for further details.

Q. Why does Manifest tell me that I have DOS 6 when I know that I have Novell
DOS 7?

A. Programs may request information on the DOS version from the system via the DOS Get
Version call.    To retain maximum compatibility with MS-DOS 6, Novell DOS 7 answers that its
version number is 6.0 whenever a program asks.

Part Two: DR-DOS 6

We recommend strongly that you read ALL of this section of this note before installing QEMM
and running the OPTIMIZE program on a DR-DOS 6 system. Pay special attention to the
section on SuperStor below if you are using SuperStor disk compression.

Q. How do I get the maximum amount of conventional memory with DR-DOS 6?

A. There are several steps involved, for which a little background information is needed.
However, you can recover as much as 629K of conventional memory using the features of
QEMM and DR-DOS.

1) To get the most conventional memory available in DR-DOS 6, use the DOS-Up feature in
QEMM in combination with the DR-DOS HIDOS option. To do this, run QSETUP, and from the
main menu select U for DOS-Up Options. Choose Y for Yes to enable all of the supported
DOS-Up features, and Enter to return to the QSETUP main menu.

2) In MS- and PC-DOS, the DOS=HIGH command in CONFIG.SYS allows the DOS kernel to be
loaded into the first 64K of extended memory (the HMA), which eliminates most of DOS's
overhead. DR-DOS also permits the kernel to be loaded into the HMA, although in a slightly
different way. This is advantageous for all DR-DOS users except those who use DESQview or
DESQview/X, which use the the HMA more efficiently than DOS can. Thus if you're a
DESQview or DESQview/X user, skip this next step. To load the DR-DOS kernel into the HMA,
choose C for "Edit the Proposed CONFIG.SYS" and add the following two lines to CONFIG.SYS
AFTER the QEMM386.SYS line:

DEVICE=C:\DRDOS\HIDOS.SYS /BDOS=FFFF HIDOS=ON

3) Use the DR-DOS HIBUFFERS command, which loads BUFFERS into the HMA, rather than
into conventional memory or High RAM. Add this line to CONFIG.SYS:

HIBUFFERS=20

Since there might not be room in the HMA to load an excessive number of BUFFERS, we
recommend limiting BUFFERS to 20.

Q. Why doesn't OPTIMIZE arrange to load the HISTORY or FASTOPEN commands
high?

A. LOADHI.SYS will not load HISTORY or FASTOPEN because they are internal instructions to
DR-DOS, rather than discrete programs as they are in MS-DOS. This causes no problems and
does not increased conventional memory overhead.

Q. What is the HIBUFFERS command?

A. HIBUFFERS is the DR-DOS command to load buffers into the HMA. It will use the HMA
even if the DR-DOS kernel is not loaded there. The BUFFERS command of DR-DOS causes the
buffers to be loaded into High RAM if HIDOS=ON is in CONFIG.SYS. Each buffer takes an
individual UMB. The BUFFERS.COM program from Quarterdeck works with DR-DOS; using the
LOADHI.COM program with BUFFERS.COM will cause the buffers to be loaded into a single
UMB. Use HIBUFFERS only if you are loading the DR-DOS kernel into the HMA, otherwise the
HMA will be used for nothing but buffers.

Q. Should I use the DR-DOS HILOAD, HIDEVICE, and HINSTALL commands in

CONFIG.SYS?

A. HILOAD, HIDEVICE, and HINSTALL are the DR-DOS internal commands that load TSRs and
device drivers high. These commands are incompatible with QEMM. QEMM's LOADHI.COM,
LOADHI.SYS, and INSTALL=LOADHI.COM /TSR which, respectively, perform the same
functions, should be used instead.

Q. Can I use the MEMMAX program that comes with DR-DOS?

A. QEMM's VIDRAM program allows the user to extend conventional memory by using the
address space normally associated with VGA graphics. DR-DOS comes with a similar
program called MEMMAX that works only with the DR-DOS memory managers. Users of any
Quarterdeck memory manager or enhancer should use VIDRAM instead of MEMMAX.

Q. Can I use the DR-DOS CHAIN command with QEMM and OPTIMIZE?

A. The DR-DOS CHAIN command allows the CONFIG.SYS to pass control to another
CONFIG.SYS-like file. DR-DOS uses it on installation if you choose to install SuperStor.
OPTIMIZE does not follow this passing of control to another file. If you are using CHAIN you
must combine your configuration files into one for the duration of the OPTIMIZE process.

Q. What about the DR-DOS utilities that load themselves high?

A. DR-DOS utilities such as Super PC-KWIK and DELWATCH are polite enough to allow
LOADHI.COM to load them high in the same manner as they would load themselves high;
this allows them to be included by OPTIMIZE in its calculations. This is done automatically
and does not require any attention from the user.

Q. Can SuperStor be loaded high?

A. SuperStor (SSTORDRV.SYS) is a disk-compression utility that is bundled with DR-DOS. It
loads part of itself high, and leaves the rest of itself in conventional memory. The remainder
cannot be loaded high with any memory manager. If you use DR-DOS's EMM386.SYS,
SuperStor merely loads low without notification; if you use QEMM's LOADHI.SYS, SuperStor
does not load at all. To prevent OPTIMIZE from trying to load SSTORDRV.SYS high, place the
line

SSTORDRV

in the OPTIMIZE.NOT file. Consult your QEMM manual for more information on OPTIMIZE.NOT.

Q. Does SuperStor present any complications for QEMM's installation?

A. SuperStor works by creating a large file on the physical hard drive, making that file look
like a hard drive, and compressing the data in the file. SuperStor may also swap the drive
designations such that the compressed file (which by default would appear to be drive D)
appears to be drive C, while the uncompressed portion of the hard drive becomes drive D.
This can be convenient, since you will not have to re-write batch files or reconfigure software
to run from a different drive. However, the DEVSWAP command poses complications for
QEMM's installation and OPTIMIZE processes. However, thanks to the DR-DOS CHAIN
command, and to the fact that DR-DOS reads a DCONFIG.SYS file before CONFIG.SYS if the
former is present, things can be simplified even if drive swapping is going on. Note that the
Stacker software that comes with Novell DOS 7 loads before CONFIG.SYS is processed, and is
much easier on the user than the SuperStor approaches presented here.

Method One:

Start with QEMM386.SYS on an uncompressed drive. Leave about one megabyte of space on
the uncompressed drive. No other Quarterdeck files but QEMM386.SYS are needed from the
QEMM directory.

The first line in DCONFIG.SYS, which is the first CONFIG.SYS file read on bootup, should be
the QEMM386.SYS line. QEMM386.SYS is in the QEMM directory of the same drive that
DCONFIG.SYS is on. The entire DCONFIG.SYS will normally be

DEVICE=C:\QEMM\QEMM386.SYS RAM DEVICE=C:\DRDOS\SSTORDRV.SYS DEVICE=C:\
DRDOS\DEVSWAP.COM CHAIN=C:\CONFIG.SYS

Now, move DEVICE=C:\QEMM\QEMM386.SYS to the CONFIG.SYS chained to from
DCONFIG.SYS.

MAKE CERTAIN THAT THE QEMM DEVICE LINE IS NO LONGER IN DCONFIG.SYS.

Run OPTIMIZE.

When you're through running OPTIMIZE, move the DEVICE=C:\QEMM\QEMM386.SYS line
back to the DCONFIG.SYS file.

That's all there is to it. You don't have to get rid of DEVSWAP or change the drive mappings
as you do in Method Two below.

Method Two:

When running OPTIMIZE, DEVSWAP.COM must be remarked out or removed from the
CONFIG.SYS. Also all references to drives C: in the AUTOEXEC.BAT and in the CONFIG.SYS
after the DEVSWAP.COM line need to be changed to drive D:. Conversely, all references to
drive D: should be changed to drive C:.

The next step is to create a QEMM sub-directory on the uncompressed drive. This is typically
drive D: when the DEVSWAP.COM device driver is loaded in your CONFIG.SYS. The following
files need to be in the QEMM sub-directory in order to run OPTIMIZE properly: DOS-UP.SYS,
QEMM386.SYS, OPTIMIZE.COM, OPTIMIZE.EXE, LOADHI.SYS, LOADHI.COM, LOGOPT.COM,
BUFFERS.COM (if you are using DOS 2.x or 3.x), RSTRCFG.SYS, MCA.ADL (if you are running
on a Microchannel machine), and all .VXD files, if you are planning on running Windows 3.0
in enhanced mode.

Once you have done this, you should reboot before running OPTIMIZE so that the drives are
set up correctly. Now you will be able to run OPTIMIZE normally. After OPTIMIZE has run, you
may edit your CONFIG.SYS and restore the DEVSWAP.COM line. After you do this, you must
edit your CONFIG.SYS and AUTOEXEC.BAT to restore the drive specifications to what they
were before; e.g. change all references to drive D: to drive C: and all references to drive C:
to drive D:. As mentioned above, if SSTORDRV.SYS is being loaded high, you must change it
to load low because it won't work when loaded high. Reboot again. You are now getting the
most out of your conventional memory.

Q. Are there any more considerations with DR-DOS 6?

A. Unlike MS- and PC-DOS, DOS hardware interrupt stacks are not provided in DR-DOS 6 --
that is, there is no STACKS command for CONFIG.SYS. There are programs that may
malfunction when DOS does not allocate STACKS. As an example, Ventura Publisher 2.0 will

allocate its own hardware interrupt stacks when DOS does not do so. When Ventura
Publisher uses expanded memory, it puts its stacks in the EMS page frame (a violation of the
EMS spec). This comes into conflict with EMS-using software, including QEMM's Stealth
feature. The only real resolution is to update your version of DOS to some later version --
Novell DOS 7, or one of the IBM or Microsoft versions.

Q. If I'm using DR-DOS 6, why does Manifest report that I have DOS version 3.31
on the DOS overview screen?

A. DR-DOS 6's API (Application Programming Interface) returns the version number 3.31
when a program using a DOS Get Version call. This is done for compatibility reasons.
Manifest makes this call, and thus returns version 3.31 on the DOS Overview screen. DR-DOS
loads an environment variable that causes the VER command to report DR-DOS Version 6,
but Manifest reports the level of API support. For all programming purposes, DR-DOS 6 is
version 3.31. There is no SETVER command, nor is it necessary.

Q. Manifest reports more FILES than I have specified in CONFIG.SYS. Why?

A. DR-DOS converts FCBS to FILE handles so Manifest and the FILES.COM program that
comes with QEMM will report the total number of FILE handles to be the sum of the two. The
minimum number of FILE handles is 20 and the minimum number of FCBS is 4. Another
effect of this conflation of FCBS and FILE handles causes Manifest to report that there is only
one FCB.

Part 3: QEMM's Advantages

Q. What are the advantages of QEMM over Novell DOS's memory managers?

A. There are at least ten good answers to this question.

1) QEMM typically provides 64K more High RAM by default than the Novell DOS 7 memory
managers, HIMEM.SYS and EMM386.EXE. The Novell DOS 7 products allow similarly
includable areas to be included manually, but this requires some expertise, and QEMM is
accompanied with better tools for this purpose.

2) QEMM's Squeeze technology allows larger resident programs to be loaded by allowing
them to squeeze--temporarily--into the EMS page frame or areas used by Adapters when
loading. The Novell DOS 7 memory managers do not provide a similar feature.

3) Using its Stealth option, QEMM can provide EVEN MORE High RAM (211K total is common)
by hiding ROMs and allowing High RAM to be mapped over them. Neither Novell DOS 7's
memory manager, nor any other third-party memory manager, currently provides this
patented technology.

4) Novell DOS 7 has no equivalent to Quarterdeck's Manifest program. Manifest, included
free with QEMM, provides extensive information about the computer on which it is running
and is an invaluable tool when optimizing a system or diagnosing a memory problem or
conflict.

5) The Novell DOS 7 memory manager provides no program to load automatically and
optimally TSR's and device drivers into the regions of upper memory. Novice users may
experience considerable difficulty achieving good results from the Novell DOS 7 LOADHIGH
program, but even advanced users will appreciate the speed and accuracy with which
QEMM's OPTIMIZE sets up a system.

6) The Novell DOS 7 memory manager provides no Analysis feature. QEMM's Analysis is
extremely useful in determining areas of upper memory that can safely be used. Analysis
also lets QEMM users reclaim unused addresses in the system ROM and in other areas in
upper memory--a great advantage to memory-hungry users.

7) The Novell DOS 7 memory manager has no equivalent for QEMM's QuickBoot feature.

8) The Novell DOS 7 memory manager provides no control over the region of High RAM that
can be used to load programs high. This means that even expert users may be unable to use
High RAM efficiently in situations where TSR's and drivers must be loaded in a specific order.
The Quarterdeck LOADHI programs allow TSR's or drivers to be directed to specific high
memory locations, giving complete control to the user. Of course, as mentioned before, this
feature is used expertly by the OPTIMIZE program in order to provide the optimum
configuration.

9) On PS/2s and other Micro Channel systems, QEMM can automatically detect the
addresses used by any adapter listed in our MCA.ADL file. This is especially valuable on
systems with adapter RAM (used by many network cards, among other adapters). Adapter
RAM can be particularly hard for 386 memory managers to detect. The Novell DOS 7
memory manager has no such feature. As the addresses used by network cards vary from
machine to machine and card to card, QEMM's MCA.ADL file can save considerable work for
network administrators in companies with large installations of PS/2s or micro channel
compatibles on networks. Users of PS/2 machines that are not on a network will also benefit
from this "ease of use" feature.

10) Novell DOS 7's EMM386.EXE is not compatible with Quarterdeck's DESQview
multitasking products. QEMM is compatible with the Novell DOS 7's TASKMAX program,
although TASKMAX may require Novell's EMM386.EXE for multitasking. Since DESQview
allows much more sophisticated multitasking and windowing features than TASKMAX,
Quarterdeck recommends using DESQview with QEMM.

Return to Technotes Main Menu.

QEMM's EMS Utility Programs

Quarterdeck Technical Note #293

This technical note describes three advanced EMS utility    programs that can give you more
control over EMS memory. This    document is provided for programmers and advanced users
who want    to control EMS memory allocation.

EMS.COM and EMS.SYS

The EMS.COM and EMS.SYS programs provide several informative and    powerful functions to
help you make the best use of your EMS memory    in cases in which you have special or
unusual requirements.    You use EMS.SYS in the CONFIG.SYS file to manipulate expanded   
memory during the system boot sequence. You use EMS.COM in the    AUTOEXEC.BAT file or
directly from the DOS prompt, as needed.    Although anyone may benefit from seeing the
EMS status report and    the details of expanded memory allocation, other uses of EMS which 
will be described in these sections are for technically    sophisticated users.   

Most of the functions of EMS.SYS and EMS.COM involve the    manipulation of expanded
memory handles. An EMS handle is the    information that the expanded memory manager
uses to identify a    block of memory that it allocates. A handle is represented by a    number
and may optionally have a name.

An expanded memory handle is the token of interaction between an    EMS-using program
and an expanded memory manager. EMS.SYS and    EMS.COM give you command-line control
of some of the EMS functions    that are usually available only at the programming level.
Since    these EMS utilities are capable of granting you access to handles    which may belong
to other programs, you should exercise caution    when using these utilities.

With the EMS programs, you can allocate and name a block of memory    with the CREATE
option, and optionally specify that this block of    memory consists of the fastest or slowest
memory on your system.    You can use the FREE option to free the expanded memory
associated    with a handle. You can read data from a file into expanded memory    or write
the data from expanded memory to a file with the LOAD or    SAVE options. You can rename
an EMS handle and change the amount of    memory associated with it.

The most common reason for using the EMS programs is to prevent a    specific application
from using all of the memory in your system.    By issuing an EMS CREATE command before
running an application, you    effectively "hide" the specified amount of memory from that   
application. Many programs (e.g., Microsoft Windows, AutoCAD,    Quattro, Lotus 1-2-3
version 3) allocate a great deal of available    memory to themselves at startup
timeþsometimes as much as you have    on your system. By creating an EMS handle in the
following fashion:

EMS CREATE handle_name 2048K

you reserve 2 megabytes of memory, identified by the name    HANDLE_NAME, that other
programs will see as already assigned, and    therefore will not touch. Once your program has
started, you could    go to the DOS prompt and issue the command:

EMS FREE handle_name

to release the 2 megabytes of memory, which would leave 2 megabytes    available after

your application is running. Because QEMM gives    out both expanded and extended
memory from the same memory pool,    you can use this method to withhold memory from
programs that    allocate their memory through EMS, XMS, VCPI, or DPMI. This method    is
particularly useful for preventing Microsoft Windows 3.1    standard mode from allocating all
memory, so that you can run    programs that get their memory through EMS, VCPI, or DPMI
inside    Windows.

If parts of the expanded memory in your system run at different    speeds, you can use EMS
to allocate memory of one speed before you    load a device driver or TSR so that it can only
use the faster or    slower memory that remains; then you can free the memory for use by   
your other applications. Manifest can show you if your memory runs    at different speeds.

If you are a programmer using expanded memory, you can use the LOAD    and SAVE
functions when you need to save and restore the contents    of expanded memory during
development and debugging.   

To get a summary report of your expanded memory:

At the DOS prompt, type EMS and press Enter.

EMS will report the total amount of expanded memory, the amount    currently available and
the address of the page frame.

EMS Parameters

Both EMS.SYS and EMS.COM respond to the same parameters. The    parameters are
described below. Some parameters have an    abbreviation you can use instead of the full
name; abbreviations    are listed in parentheses below. Brackets ([]) in a statement    indicate
that the enclosed item is optional.

CREATE name amount (CR)    allocates expanded memory. CREATE requires two arguments: a
name    for the block of memory you are allocating and the amount of    memory. The name
may be one to eight characters long. The name need    not be enclosed in quotation marks
unless it contains blanks.      You can express the amount of memory to allocate several ways:
Use    a number by itself to express the amount of memory in EMS pages    (16K per page).
Use a number directly followed by the letter K    (e.g., 2048K) to express the amount in
kilobytes. If you specify    the number of kilobytes, the memory manager will round the
number    up if necessary to a multiple of 16. You can use the letter M    instead of K to
express a value in megabytes. You can use the    argument ALL to allocate all available
memory. You can use the    argument ALL-nnnnnn, ALL-nnnnnnK or ALL-nnnM to allocate all   
available memory minus a specified number of EMS pages, kilobytes    or megabytes.

Follow the EMS CREATE command with the EMS DIR command to confirm    the allocation and
to determine the handle number assigned to the    name.

CREATEFAST name amount (CFAST) and CREATESLOW name amount (CSLOW)    are alternate
forms of the CREATE option (see above) that instruct    the memory manager to allocate the
memory from either faster or    slower memory. Use Manifest's Expanded Memory Timings to
determine    if any speed difference does in fact exist.

DIR      displays a breakdown of the current expanded memory allocated. For    each allocated
handle, DIR gives the number of expanded memory    pages associated with it, the number
of kilobytes of memory those    pages represent, and the name assigned to that handle, if
any.

FREE name or number      frees memory and deallocates a handle. FREE requires that you   
specify a handle to deallocate, either by its name or number.    Beware of doing this to
someone else's handle.

HELP      displays help on the EMS programs and their options.

LOAD name or number filename      allows you to restore the contents of expanded memory
pages that    have been stored in a file. This option requires that you specify    the handle
name (or number) and the name of the file containing the    data you want to restore. The
number of pages required will be    automatically allocated based on the file's size.

RENAME name or number new_name (REN)    lets you assign a new name to a handle. The
first parameter to    RENAME is the original handle. You may refer to this handle by its   
number or its name. The second argument is the new handle name.    RENAME can be useful
to name an unnamed handle to help you keep    track of it.

RESIZE name or number amount (RES)      lets you increase or decrease the amount of
memory assigned to a    handle. Its two arguments are the same as those of CREATE (see   
above).

SAVE name or number filename      allows you to save the contents of the expanded memory
pages    associated with an EMS handle to a file. This option requires that    you specify the
handle name (or number) and the filename.

?      lists the EMS programs' parameters.

EMS2EXT.SYS

EMS2EXT.SYS converts expanded memory to extended memory, for    programs that rely
upon the old INT 15 method of accessing extended    memory. This method is no longer
widely used, and has been replaced    by XMS (the Extended Memory Specification). Older
versions of DOS    shipped with utilities which relied upon the old INT 15 interface,    most
notably VDISK.SYS. These drivers have since been replaced by    programs that use XMS
instead, and as a result EMS2EXT is rarely    useful.

EMS2EXT is not needed for programs that access memory through XMS,    VCPI, or DPMI. It is
intended only to provide on-the-fly control    over extended memory allocated through the
older INT 15 interface.    Programs which support XMS, VCPI or DPMI can allocate and   
deallocate memory directly from QEMM's memory pool and have no need    for EMS2EXT.

Even if you have an old extended memory utility, you cannot use    EMS2EXT if your program
expects to access extended memory directly    at physical addresses above 1024K.
Quarterdeck's QEXT.SYS driver,    supplied with DESQview, cannot use memory supplied by
EMS2EXT.    Likewise, Microsoft's HIMEM.SYS cannot use memory supplied by    EMS2EXT.

If you do have an old extended memory program that uses the INT 15    interface, EMS2EXT
lets you allocate memory for that program out of    QEMM's memory pool. The advantage of
allocating this memory with    EMS2EXT instead of with QEMM parameters is that the
memory    allocation can later be increased or decreased with the EMS.COM    program
without rebooting your system.

EMS2EXT is a device driver and therefore needs to be loaded with a    DEVICE= statement in
your CONFIG.SYS file. The statement to load    EMS2EXT should look like this:

DEVICE=C:\QEMM\EMS2EXT.SYS MEMORY=nnn speed

The nnn parameter in MEMORY=nnn is the number of kilobytes of    expanded memory to
allocate initially (e.g., MEMORY=512). EMS2EXT    will allocate an EMS handle named
EMS2EXT for a block of memory    nnnK in size. You can also load EMS2EXT without specifying
any    MEMORY parameter. EMS2EXT will be resident, but it will not    allocate any memory. It
will, however, reserve for itself a handle    with the name EMS2EXT.

The optional SPEED parameter tells EMS2EXT to allocate faster or    slower memory if there
are different speeds of memory on your    system. You may specify FAST, SLOW or no SPEED
option at all.      You can, as needed, grow, or shrink the amount of extended memory    for the
EMS2EXT handle using EMS.COM. You can use this capability    to give a program INT 15
extended memory only while it is running.    For instance, if you loaded EMS2EXT with no
MEMORY parameter, you    could make a batch file which included the line:

EMS RESIZE EMS2EXT 128K

before running an application that needs 128K of extended memory    through the old INT 15
interface. When the program terminates,    another EMS statement could free the memory:

EMS RESIZE EMS2EXT 0

The memory is then returned to QEMM's memory pool for the use of    other programs.

Return to Technotes Main Menu.

QEMM's Manifest Program
Manifest is a powerful system reporting program that is automatically installed on your
hard drive when you install QEMM. While Manifest can be extremely useful when
troubleshooting a problem, it is much more than a diagnostic tool. Whether you are new to
computers or a power user with years of DOS experience, Manifest will help you take full
advantage of the memory that is installed in your computer.
To run Manifest type MFT at the DOS promp and then, at your own pace, explore the world
of memory as it relates to your own PC. From within Manifest, press F1 at any time for
context-sensitive online help.

Return to Hints Main Menu.

QEMM's New Parameter Names
Many QEMM parameters have new names. If you are upgrading from an earlier version, you
can still use the old parameter names if you like. Below is a list of the old parameter names,
cross-referenced with the new names. Abbreviations are listed in parentheses.

Old Name

COMPAQ386S (C386S)
COMPAQEGAROM (CER)
COMPAQHALFROM (CHR)
COMPAQROMMEMORY (CRM)
DONTUSEXMS (DUX)
DOS4 (D4)
FORCEEMS (FEMS)
FORCESTEALTHCOPY (FSTC)
IGNOREA20 (IA)
LOCKDMA (LD)
NOCOMPAQFEATURES (NCF)
NOEMS
NOFILL (NO)
NOHMA
NOPAUSEONERROR (NOPE)
NOROM (NR)
NOROMHOLES (NRH)
NOSHADOWRAM (NOSH)
NOTOKENRING (NTR)
NOTOPMEMORY (NT)
NOVDS
NOVIDEOFILL (NV)
NOVIDEORAM (NVR)
NOWINDOWS3 (NW3)
NOXBDA (NX)
NOXMS     
UOLDDV (ODV)
UNUSUALEXT (UX)

New Name

COMPAQ386S:Y (C386S)
COMPAQEGAROM:Y (CER)
COMPAQHALFROM:Y (CHR)
COMPAQROMMEMORY:Y (CRM)
USEXMS:N
DOS4:Y (D4)
FORCEEMS:Y (FEMS)
FORCESTEALTHCOPY:Y (FSTC)
TRAP8042:Y (T8) **
LOCKDMA:Y (LD)
COMPAQFEATURES:N (CF)
EMS:N
FILL:N
HMA:N
PAUSEONERROR:Y (PE)
MAPREBOOT:N (MR)
ROMHOLES:N (RH)
SHADOWRAM:NONE (SH)
TOKENRING:N (TR)
TOPMEMORY:N (TM)
VDS:N
VIDEOFILL:N (VF)
VIDEORAM:N (VR)
WINDOWS3:N (W3)
XBDA:N
XMS:N
OLDDV:Y (ODV)
UNUSUALEXT:Y (UX)

** Default has changed.

Return to Hints Main Menu.

QEMM's Optimize Program
Optimize is a program that determines how to load TSRs, device drivers and selected parts
of DOS into upper memory. Optimize analyzes the memory requirements of device drivers
and TSRs that you are loading from CONFIG.SYS and AUTOEXEC.BAT and any batch files
called by AUTOEXEC.BAT. Then, Optimize determines the most efficient way to load items
into High RAM by testing all possible locations. There may be millions of possibilities.
The object is to free up as much conventional memory as possible for your DOS programs. If
you are using QEMM's DOS-Up feature, Optimize also experiments with different ways of
loading parts of DOS into upper memory

When you install QEMM, INSTALL offers to run Optimize. You should run Optimize again if
you add new hardware devices or modify your AUTOEXEC.BAT or CONFIG.SYS files.

Optimize normally reboots your machine two or three times as it analyzes your
configuration.    If your system is particularly complex, however, you may be asked to reboot
your machine several more times. These additional reboots are necessary to detect non-
standard hardware and software and result in greatly improved compatibility between such
systems and QEMM.
Optimize changes the lines that load device drivers and TSRs by adding a LOADHI command
to the beginning of those lines. For example, a device driver line that looks like this:
                    DEVICE=C:\DOS\SETVER.EXE

would look something like this when Optimize completes:
                    DEVICE=C:\QEMM\LOADHI.SYS /R:1 C:\DOS\SETVER.EXE

 A TSR line in AUTOEXEC.BAT that looks like this:
                    C:\DOS\SMARTDRV.EXE

 would look something like this after running Optimize:
                  C:\QEMM\LOADHI /R:2 C:\DOS\SMARTDRV.EXE

For detailed information on Optimize, see Chapter 3 of the QEMM Reference Manual. For
information on the LOADHI command, see Chapter 8.

Return to Hints Main Menu.

QEMM's StealthROM Feature
StealthROM is an exclusive QEMM feature that can typically create an additional 48K to
115K of High RAM on almost any PC. StealthROM hides your PC's ROMs and makes their
memory addresses available for High RAM or expanded memory mapping. The advantage of
having the additional High RAM is that QEMM can load TSRs, device drivers and selected
parts of DOS there instead of in conventional memory. By freeing up conventional memory,
you will have more room for running DOS programs.

Depending on your configuration and the installation options you chose, StealthROM may
have been enabled on your system when you installed QEMM. When you run the Optimize
program, Optimize will try to load your TSRs, device drivers and selected parts of DOS into
High RAM. If all of them will not fit, Optimize will test your system for compatibility with
StealthROM and will determine which StealthROM method is best for your system.
For more information on StealthROM, consult the technote "An Overview of QEMM's
StealthROM Technology" (STLTECH.TEC). In the unlikely event that you are having trouble
that you think is related to Stealth, consult "General Troubleshooting" (TROUBLE.TEC) or
"Troubleshooting StealthROM" (STEALTH.TEC).

Return to Hints Main Menu.

QEMM's StealthROM Technology:    An Overview

Quarterdeck Technical Note #168

Q: What is StealthROM?   
Q: How does StealthROM work?   
Q: What is the difference between ST:M and ST:F?   
Q: Which StealthROM strategy is preferable?   
Q: Does StealthROM slow down my system?   
Q: How can StealthROM fail?   
Q: If I'm having problems with StealthROM, what should I do?

Note: for the purposes of this note, "386" refers to any processor    in the 80386 family -- the
Intel 80386 SX and DX; the i486 SX and    DX in all their flavors; the Pentium processor, and
all processors    compatible with these chips.

Traditionally, 386 memory managers such as QEMM have been able to    create extra
memory for DOS by associating physical extended    memory (memory above the 1MB line,
which is outside of DOS'    address space) with unused addresses between 640K and 1MB.
This    extra memory is called High RAM. Quarterdeck's StealthROM    technology (which is
included with QEMM versions 6.00 and higher)    is QEMM's method of creating more High
RAM than previously thought    possible, by mapping memory to addresses that are used by
system,    video, disk, and other ROMs.

Q. How does StealthROM work?

To understand how StealthROM works, it is useful to understand the    concept of MAPPING.
When a program needs more memory than what is    normally available to it under DOS, it
can request that some    expanded memory be allocated from either an EMS board, or from
the    EMS memory created by a 386 expanded memory manager. MAPPING is    the process
by which memory management hardware and software can    make memory appear in
appropriate places at appropriate times; it    is the process of associating memory with an
address other than    its actual one. A convenient place to make memory appear is a 64K   
window of addresses above the 640K line; this window is called the    EMS page frame. The
expanded memory specification (EMS) uses    mapping to make portions of expanded
memory appear inside the EMS    page frame when that memory is requested by a program.

Expanded memory has no addresses of its own, but can be made to    appear at a valid
address -- "mapped in". Expanded memory pages    can be filled with code or data by a
program; when that code or    data is not needed, the pages can may be "mapped out" --
relieved    of their addresses and put back into the expanded memory pool,    with the code
and data still intact. When the application needs    these pages, they are "mapped in" to the
EMS page frame again. It    is therefore possible for a program that uses expanded memory
to    have access to much more memory than DOS itself can see of its own    accord. You may
know this technology as "bank switching," which    is one of the techniques used to extend
and add power to    everything from mainframe computers to high-end UNIX systems... to   
DOS machines!

Mapping is also useful for creating High RAM; in addition the the    page frame, memory can
be associated with other unused addresses    between 640K and 1MB. The 386 hardware and
QEMM cooperate to make    memory appear where there is otherwise none.

StealthROM uses mapping for a new purpose. The 386 chip can be    made to map memory
in or out of DOS' address space at any time.    StealthROM uses 386 mapping to map system,

disk, or video ROMs in    and out of DOS' address space when appropriate, using one of two   
strategies -- Mapping mode or Frame mode. These two features are    activated by
parameters on the QEMM line -- ST:M, for Stealth    Mapping, or ST:F, for Stealth Frame.

Q. What is the difference between ST:M and ST:F?

"BIOS" stands for "Basic Input Output Services", programs that are    built right into the
hardware of your system in a form called    "Read-Only Memory". Your system communicates
with various parts    of itself and with its peripherals via the ROM-BIOS, often    referred to as
"ROMs". The ROMs on your system are accessed via    interrupts -- which are conceptually
similar to BASIC subroutines.    When your system boots up, it sets up something called an   
interrupt vector table. This is a list of addresses where    specific ROM subroutines can be
found. When a program on your    system needs a certain ROM function (for example, writing
colored    text to the screen), it sets up some data in appropriate places,    and then calls the
interrupt with a processor INT instruction. The    processor then looks at the interrupt vector
table to find out the    address where the ROM function can be found. The processor   
transfers control to that address, the ROM subroutine gets run,    and then control is returned
to the calling program.

When you use StealthROM, as your system boots QEMM takes control    of interrupts that are
in use by the ROMs on your system and    points those interrupts into QEMM itself. This way,
QEMM can    monitor exactly when a ROM interrupt occurs, and can manage the    interrupt
appropriately.

When you use ST:M ("Mapping Method"), QEMM maps system, video, and    disk ROMs and
any other "Stealthable" ROMs out of the first    megabyte. (For information on what is
"Stealthable," see "How can    StealthROM fail?" below.) When the ROM is needed by the
system,    QEMM maps the appropriate ROM code into the expanded memory page    frame.
The ROM code now has a valid address at which it can    execute, and it does so normally.
When the ROM routine is    finished, QEMM then remaps the ROM elsewhere out of the
address    space.

When you use ST:F ("Frame Method"), QEMM leaves the system, video,    and disk ROMs
where they are normally found. QEMM then places the    EMS page frame at the same
address as -- or "on top of" -- a ROM.    Expanded memory can then be mapped into the EMS
page frame. When    the ROM that has been hidden by the page frame is needed, QEMM   
maps the page frame away, and maps ROM back into the addresses    that were occupied by
the page frame. The ROM code then executes    normally. When the ROM routine is finished,
QEMM can then restore    the contents of the page frame, and the ROM is effectively hidden   
again.

Q. Which StealthROM strategy is preferable?

Since ST:M is capable of mapping almost all ROMs out of DOS'    address space, and thus
provides much more High RAM, it is the    better of the two options. ST:F should only be
needed on a very small number of systems; its object is to ensure compatibility    with
machines that have ROMs that jump to each other without using    an interrupt to do so, or
with ROMs that need to execute at their    original addresses.

Q. I have to have a special version of QEMM so that StealthROM    will work on my
system, right? My system has to be one that    StealthROM knows about, right? I
have to disable some of QEMM's    memory management features to take
advantage of StealthROM, right?

No to all three questions! StealthROM is designed to work on ANY    system, regardless of

brand, model, or ROM BIOS revision. You do    not need a special version of QEMM or
StealthROM that has been    customized for your machine, because StealthROM's strategy
merely    relocates your ROMs instead of replacing them. StealthROM does    not modify,
compress or replace your ROM BIOS, and it does not    depend on being aware of the brand
or revision of your ROMs.    Additionally, StealthROM will typically create more High RAM on   
your system than any other memory management technique. You do    not have to disable
any of QEMM's features -- EMS, XMS, DPMI, or    VCPI memory management. Other memory
managers force you to    sacrifice features or compatibility as they try to match QEMM's   
prowess in squeezing every last byte of High RAM from your system.

Q. Does StealthROM slow my system down?

StealthROM does add some tiny amount of overhead to ROM BIOS    interrupts. Since most
application programs spend very little    time calling ROM code, the slowdowns are usually
imperceptible or    insignificant to the user. Ironically, since benchmark programs    often call
ROM interrupts repeatedly (some do almost nothing but    this), the greatest slowdown will
be seen in some benchmark    results; these results rarely have much to do with the actual   
speed of useful programs, however. Since your application programs    typically have much
more conventional memory to deal with when    StealthROM is invoked, you are more likely
to observe faster --    not slower -- performance. Furthermore, QEMM optimizes some ROM   
video functions with its own faster techniques when StealthROM is    active, and QEMM's
ROM parameter (see the QEMM documentation) can    provide additional performance
increases. Using StealthROM with    the ROM parameter is typically significantly faster than
not using    QEMM at all.

Q. How can StealthROM fail?

StealthROM is a robust and proven technology. However, it is    possible for programs or
system ROM implementations to interfere    with StealthROM's strategies. Note that the
problems described    here are infrequent and/or system-specific, and that most users    will
experience no difficulty at all with StealthROM.

In the above description of how StealthROM works, each strategy    depends on a processor
interrupt being referenced. This is the    normal way of accessing ROM code; processor
registers are loaded    with data and with information which denotes exactly which ROM   
service is being requested, and then a processor INT instruction    is called. BASIC
programmers will recognize that this is similar    to the process of initializing a few variables
with data, and then    calling a subroutine with a GOSUB instruction; most good texts    favor
this method of programming. However, it is possible (though    relatively uncommon) for a
piece of code to JUMP to a specific ROM    address, without branching via an interrupt. This is
analogous to    a BASIC GOTO, rather than a GOSUB; dependencies on GOTOs are    generally
frowned upon by expert programmers, since a GOTO    presumes that the address to which
the code is jumping will remain    constant and unchanging. This is less of a problem if one
person    writes all the code, since it is easier for one person to keep    track of the proper
destination addresses; when more than one    person is involved, it's more difficult to
determine why and where    the code should branch.

A few addresses in the interrupt vector table are used to point to    tables of BIOS data,
rather than to executable code. StealthROM    is designed to account for these sorts of
addreses as well; as    with program code, QEMM points the processor to appropriate data    if
an address in the interrupt vector table points to system    configuration information, rather
than to BIOS program routines.

If an application or utility jumps directly to a ROM address when    StealthROM is invoked,
QEMM will not be able to intercept an    interrupt, and thus may not have a chance to make

sure that the    appropriate portion of the ROM code is mapped into the page frame.    If
QEMM's Optimize program detects this behavior, it can make the    application work properly
with StealthROM by applying the    STEALTHTHUNK parameter, sacrificing a small amount of
High RAM    (usually 4K) in order to intercept the direct jump, map the    appropriate ROM into
the page frame, and divert the direct jump to    the proper address. If the behavior does not
occur during the    Optimize process, it will probably be necessary to EXCLUDE a    portion of
the ROM on the QEMM386.SYS line in the CONFIG.SYS.    More information on STEALTTHUNK
parameter can be found in the QEMM    Reference Manual (or in the README file in some
releases).

In the case of system setup programs and installation routines for    video cards (many of
which access ROM addresses directly), it is    far better to disable QEMM temporarily than to
use EXCLUDEs or    sacrifice the large amounts of extra High RAM that ST:M can    provide.
Setup programs should need to be run infrequently, and    typically require a reboot before
the modified settings take    effect. High RAM is generally much more useful. It is worth   
weighing the benefits of instant access to your setup program    against the extra High RAM
that StealthROM can provide; the    decision should not be a difficult one.

The easiest way to deal with this is to disable QEMM, run your    Setup program, and reboot
with QEMM active again. To disable QEMM    temporarily, hold down the <Alt> key
immediately after you hear a    beep on bootup. QEMM will post a message telling you to
press    <Escape> to unload QEMM, or any other key to continue with QEMM.    Press
<Escape>, and run your Setup program. (If you are using QEMM's DOS-UP feature, you will
first see    a message asking if you want to unload DOSDATA. Press <Escape> to    unload
DOSDATA, then hold down the <Alt> key again until you see    the message telling you to
press <Escape> to unload QEMM. After    unloading QEMM, run your Setup program, then
reboot the machine    normally (without holding down <Alt>); your revised Setup will be    in
effect, and so will QEMM.

If you are using DOS 6.0, you can also boot without loading either your CONFIG.SYS or
AUTOEXEC.BAT file by pressing F5 before the CONFIG.SYS is processed.    Also, if you press
F8 before the CONFIG.SYS is processed, you will be given the option of processing your
configuration files on a line-by-line basis.    Choose "No" when asked if you want to load
DOSDATA, QEMM386, DOS-UP, and QDPMI.    If you choose to step through your configuration
files line-by-line, you will see error messages stating that some drivers and TSRs cannot load
high and will be loaded low, and suggesting that you re-run Optimize.    These error
messages are normal when booting without QEMM.

* Some ROMs are written in such a way that they jump internally to    addresses that are
"hard-wired" into the ROM code. For    instance, a ROM that lives at address C000 may jump
within    itself using a full address like C000:AD91, where a jump to    offset AD91 would have
had the same effect. Jumps to explicit    addresses can confound StealthROM, as the ROM
does not always    execute at its original address. The best way of getting around    this
problem is often to use ST:M, and to place the EMS page    frame to be placed on top of the
ROM in question; this means    that the ROM will execute at its original location without any   
sacrifice of High RAM. If you cannot put the page frame over the    offending ROM, the ST:F
option is another method of guaranteeing    that all ROMs will execute at their original
addresses.

* Sometimes one ROM will jump directly into another ROM's code instead    of accessing the
other ROM through interrupts. In such    circumstances, ST:F may be helpful, since the ROMs
will all    execute at their original addresses, making both inter-ROM and    intra-ROM jumps
safe.

* Some programs find the address of a given piece of ROM at    startup, and then jump

directly to that address later on, at a    time when the ROM may not be mapped into memory.
Programs like    these will often require that a portion of the ROM be EXCLUDEd    on the
QEMM386.SYS line in CONFIG.SYS. Quarterdeck Technical    Note #205, Troubleshooting
StealthROM (STEALTH.TEC) can assist    in finding the appropriate EXCLUDE quickly.

* Some ROMs do not have any interrupts pointing to them at    startup. If this is the case,
QEMM will not be able to detect    where a given interrupt should point, and thus may not
invoke    StealthROM for that ROM. Again, Quarterdeck Technical Note    #205,
Troubleshooting StealthROM (STEALTH.TEC) may help to    determine which addresses within
this ROM must be EXCLUDEd (for    compatiblity) or can be INCLUDEd (for more High RAM).

* Some device drivers refuse to load unless they see an interrupt    pointing to its normal
location. Quarterdeck Technical Note    #233, "QEMM and the XSTI parameter" (XSTI.TEC)
explains another    way to resolve this problem which usually results in more    conventional
memory saved than if the driver is loaded before    QEMM. The DEVICE= lines that refer to
these programs may also    be loaded before the QEMM386.SYS line in CONFIG.SYS (though   
after DOSDATA.SYS) if necessary.

* Some programs make invalid assumptions about the EMS page frame. In    some cases,
programs assume that the state of the EMS page frame    will remain unchanged even after
they decide to release their    claim to a page of expanded memory; this is akin to assuming   
that you can get your property back after leaving it at the end    of the driveway on garbage
pick-up day. This fails with Stealth    ROM because, by default, the page frame is immediately
un-mapped    after a handle has been abandoned -- as if, in the above    example, the city
picks up the garbage pretty much immediately    -- as soon as you get back into your house.
The UFP:N parameter    suppresses this feature and can make such careless programs work   
with StealthROM, perhaps at the expense of some speed.

* Some applications assume that the contents of the page frame    will be the same at
hardware interrupt time as they are when the    main body of the application is executing --
like assuming that    your coat will never get moved from the place in which you saw    the
cloakroom attendant put it. This is an invalid assumption,    and can cause problems not only
with StealthROM, but with    EMS-using TSRs as well. This ignores the guidelines in the   
Expanded Memory Specification, which governs the proper use of    expanded there.

* Other programs outright violate the Expanded Memory    Specification by placing their
interrupt stacks -- effectively    the program's means of keeping track of its current state -- in 
the page frame. This is not simply a problem for StealthROM or    for QEMM; this can cause a
conflict with any using expanded    memory and ANY expanded memory manager.

Fortunately, the programs that exhibit these problems are rare.    If you experience difficulty
that is found to be Stealth-related,    you might wish to encourage the developer of the
faulting program    to make the program more compatible with StealthROM. Quarterdeck    is
very happy to assist the developer of any commercial hardware    or software who wishes
added compatibility with our products.

Q. What does the ROM parameter have to do with StealthROM?

ROM code is normally read 8 or 16 bits at a time, and 32-bit RAM    is therefore much faster.
(You can see this in action by looking    at Manifest First Meg / Timings, first without the ROM
parameter    on the QEMM386.SYS line in CONFIG.SYS, and then with ROM added to    the end
of that line.) Some video ROM speed-up drivers work by    copying the contents of video ROM
to conventional RAM. These    programs (such as TVGABIO.SYS, RAMBIOS.SYS, FASTBIOS.SYS,
and    SPEED_UP.SYS, typically shipped on the utilities diskette provided    with your video
card) will often conflict with StealthROM. If    loaded after QEMM, such programs may refuse

to load because they    detect that a program loaded before them (QEMM) is intercepting   
the video interrupt, INT 10. Conversely, if loaded before QEMM,    these programs may divert
interrupts into RAM, so that QEMM cannot    locate the ROM handler for those interrupts. In
these cases, the    video speed-up program will function properly, but StealthROM    will be
disabled. XSTI.TEC explains how to resolve this problem if    you really want to load the video
enhancement program. However,    QEMM's ROM parameter generally provides the same
feature these    drivers do, with three important advantages. First, QEMM copies    the video
ROM into 32-bit RAM and then write-protects the RAM so    that some errant program does
not overwrite the ROM code. Second,    QEMM's ROM parameter costs neither conventional
memory nor High    RAM to provide this feature -- the video drivers mentioned above    will
typically take 32K of one or the other. Finally, the ROM    parameter is fully compatible with
StealthROM.

Q. If I'm having problems with StealthROM, what should I do?

StealthROM problems can be resolved by consulting Quarterdeck    Technical Note #205,
"Troubleshooting StealthROM" (STEALTH.TEC).

SUMMARY

StealthROM is a robust and proven technology. It is an    easy-to-use, safe, and efficient way
of creating more High RAM on    your system, providing more memory for your TSRs, your
device    drivers, DESQview 386, MS Windows, and your application programs.    It is likely to
speed up your system rather than slowing it down.    It is designed to be effective on any 386
or higher processor,    regardless of the ROM's manufacturer or version. Many programs   
that cause conflicts with StealthROM can cause problems with other    programs and memory
managers. Stealth conflicts are rare, and    troubleshooting is straightforward. StealthROM is
the easiest way    to provide the optimal amount of High RAM on your system.

Return to Technotes Main Menu.

QEMM's XSTI StealthROM Parameter

Quarterdeck Technical Note #233

Q. Why do I see this message when I start my computer?

QEMM386: Disabling Stealth because QEMM could not locate the    ROM
handler for INT XX"

A. There are three possible causes:

1)    You are loading a driver before QEMM which is grabbing    interrupt XX; OR

2)    A ROM is loading a handler for interrupt XX into RAM.

3) You are using a computer which was upgraded to an 80386 with    an add-in board,
such as the Intel "Inboard PC."

There are several potential solutions:

1)    Load the driver in question after QEMM. If it must be    loaded before QEMM, load
HOOKROM.SYS before you load this    driver.

During installation of QEMM, HOOKROM.SYS is installed in the    QEMM directory.
Assuming that QEMM is installed in a    directory called QEMM on your "C" drive, the
new line would    look like this:

DEVICE=C:\QEMM\HOOKROM.SYS

HOOKROM is a device driver that may be needed if you use the    StealthROM feature
and are loading one of your device    drivers before QEMM386.SYS in the CONFIG.SYS
file. Though    it is usually best to load device drivers after QEMM386.SYS,    there are
some special drivers (like the ones that manage    some 80386 conversion hardware)
that must load before    QEMM386.SYS. These drivers can obscure information that   
QEMM needs to enable the StealthROM feature, in which case    QEMM386.SYS will post
the above error message.

Placed before QEMM386.SYS in the CONFIG.SYS, HOOKROM will    gather the necessary
information for QEMM386.SYS and prevent    this special driver from interfering with
the StealthROM    process.

2)    Add the parameter "XSTI=XX" (where "XX" is the number of the    interrupt reported
in the message) to the QEMM386.SYS line    of the CONFIG.SYS, then add the
appropriate eXclude to this    same line in order to keep QEMM from mapping over the 
portion of the address space where the ROM handler for    interrupt XX resides. (See
"HOW DO I FIND THE APPROPRIATE    EXCLUDE?" below.)

It may also be possible to reconfigure your system in such a    way that the ROM no
longer redirects an interrupt into RAM.    This is the case with the Invisible Network.
(See "KNOWN    USES FOR XSTI" near the end of this technical bulletin.) It    is also
possible that a program you are trying to run, or    even your operating system, wants
to have a particular    interrupt remain unStealthed. XSTI, with the appropriate   

eXclude, is necessary to get your program, or operating    system, working with
StealthROM.

3)    Add the following parameters to the QEMM device line in your    CONFIG.SYS file:

XSTI=70 XSTI=74 XSTI=75 XSTI=76

A typical QEMM line would look like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=70 XSTI=74 XSTI=75    ... XSTI=76

(Note that the preceding two lines should be on a single    line in CONFIG.SYS.)

Q. How do I find the "appropriate exclude"?

A. First, note that QEMM's Stealth Testing will find automatically    the majority of
circumstances that will require XSTI, and will    make the appropriate exclusions or S-pages. If
the conflict    you experience does not happen as part of the boot process.    You find the
appropriate eXclude by excluding all the address    space occupied by ROMs, using the
parameter FSTC, and doing an    Analysis. First, locate all your ROMs. You can do this by   
looking at the First Meg/Overview screen of Manifest. Those    with non-Micro Channel
machines and VGA video typically have a    system ROM at F000-FFFF and a video ROM at
C000-C7FF. Those    with PS/2s or other Micro Channel machines typically have one    ROM at
E000-FFFF. Add-on devices, such as some disk controller    cards and network cards, may also
have ROMs, which you must    eXclude as well.

A typical QEMM line for a non-Micro Channel machine is:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=XX X=F000-FFFF    ... X=C000-C7FF FSTC

(again, all on one line).

On a PS/2 or most Micro Channel machines, the line will look    like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=XX X=E000-FFFF FSTC

In the above examples, XX is replaced with the interrupt    reported in the QEMM error
message.

Reboot your computer with this CONFIG.SYS. StealthROM    should work this time. Use your
computer for a while, then    look at the QEMM/Analysis screen of Manifest. You will see a   
chart that looks something like this:

Consulting the ANALYSIS section of your Manifest or QEMM    manual, you will read that an "I"
indicates a portion of the    address space that HAS NOT been accessed and an "O" indicates
a    portion of the address space that HAS been accessed. You must    eXclude that portion of
the address space in the eXcluded ROMs    where you now see "O"s.

In this example (which presumes that the ROMs were located from    C000-C7FF and F000-
FFFF), the appropriate eXclude is    "X=F800-F9FF", an 8K portion of the address space. This
is the    portion of the address space where the ROM handler for the    interrupt XX resides.
Our QEMM line, with appropriate    excludes, would read as follows:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=XX X=F800-F9FF

PLEASE NOTE: The FSTC parameter is used only during this    analysis process and should
be removed afterward. Because the    last 64 bytes of the First Meg address space (in FFFC-
FFFF) is    still addressed directly with StealthROM, the last 4K piece of    the QEMM/Analysis
screen will always have an "O" in it, whether    an eXclude is appropriate or not.

ALSO NOTE: This procedure IS NOT used to find INCLUDES in    portions of the address
space NOT occupied by Stealthed ROMs.    If you wish to experiment with INCLUDES (in order
to gain    additional High RAM) you must perform a complete analysis as    described in the
ANALYSIS section of the QEMM or Manifest    manual.

 Q. What if there are no "O"s?

A. It is possible that there are no "O"s at all: this is because    the ROM handler for interrupt
XX has been replaced by a new    interrupt handler and the one in the ROM is not being
accessed    at all. No eXclude is necessary in this case.

 Q. What are the known uses for XSTI?

A. There are several known instances of a need for XSTI. In many    cases, these parameters
will be found automatically by QEMM

INVISIBLE NETWORK
If you use the boot ROM on the Invisible Network cards, it    loads 32K of code into the
top of the conventional memory    address space, and grabs interrupt 13. A much
better solution    than to use XSTI=13 and the appropriate eXclude is to disable    the
ROM on the network card and load IS2BIOS instead. This    will give you 32K more
conventional memory (since IS2BIOS can    be loaded high), and you will not have the
network card's ROM    breaking up your high address space.

 MS-DOS 5 ON SOME ZENITH MACHINES
XSTI=18 and the appropriate eXclude is necessary to print on    some Zenith
machines. This is due to an obscure method used    only in some Zenith BIOSes. A
Zenith version of DOS 5 may not    have this problem.

 WORDSTAR 2000 version 1.01
XSTI=15 and the appropriate eXclude is necessary. This is due    to an ancient method
of jumping directly to the code that an    interrupt vector points to. This version of
Wordstar 2000 was    written in 1985. Newer versions may not have this problem.

VIDEO ACCELERATOR DRIVERS
SPEED_UP.SYS is a driver that comes with the Orchid Prodesigner    video card. It
makes a copy of the video ROM in RAM in order to    speed up your video. If it is
loaded after QEMM on a system    with StealthROM enabled, it refuses to load,
complaining that    someone else has taken Interrupt 10. If loaded before QEMM on   
the same system, StealthROM will be disabled because QEMM    cannot find the ROM
handler for Interrupt 10.

You can solve both of these problems with XSTI=10. No exclusion    is necessary
because the video ROM is no longer being used.    Speed_up.sys can then be loaded
after QEMM and (and can be    loaded into upper memory). However, we strongly
recommend that    you NOT load SPEED_UP.SYS, RAMBIOS.SYS, FASTBIOS.SYS, or any   
similar driver. Using SPEED-UP.SYS costs you 36K of memory.    Instead use QEMM's
ROM parameter, producing the SAME effect but    using NO address space between 0-
1024K.

TECHNICAL BACKGROUND

All you need to know to use the XSTI parameter is contained above.    If you REALLY want to
understand what you are doing, keep reading.    Otherwise, go sit out on the back porch and
watch the sun set.

Q. What does StealthROM do to interrupts?

A. The StealthROM feature of QEMM allows you to map High RAM over    ROMs by
intercepting the interrupts that point into those ROMs    and restoring the ROM into the Page
Frame when the interrupt    comes in, allowing the ROM's code to be run from the Page   
Frame. QEMM must divert all interrupts that point into a ROM    it Stealths. Otherwise, when
an undiverted interrupt comes in,    control will pass to whatever QEMM has mapped into the
High    RAM in that portion of address space, rather than to the ROM    that originally resided
there.

Q. In what cases might QEMM not find an interrupt handler?

A. If a program you have loaded before QEMM or a ROM (all ROMs    load before the
CONFIG.SYS) loads an interrupt handler into    RAM, then, when QEMM loads, QEMM will find
this interrupt's    handler not pointing into a ROM. An interrupt handler pointing    into RAM
cannot be Stealthed. If a device driver diverts this    interrupt, you can load it after QEMM. If
a ROM diverts this    interrupt into RAM, you should see if there is a way to    reconfigure the
ROM so that it does not. On the INVISIBLE    NETWORK, for instance, it is possible to
reconfigure the    network card (by means of a jumper) so that the ROM is no    longer active
and network services are provided by a program.    In other cases, there may be a
configuration program that    performs this service.

If you cannot reconfigure the ROM to stop diverting this    interrupt, then QEMM must be told
not to try to Stealth this    interrupt. This is what XSTI=XX does. Since the new interrupt   
handler may eventually call the ROM's interrupt handler, the    ROM's interrupt handler for
this interrupt may have to be left    in place. This is done by eXcluding the portion of the
address    space where the ROM's handler for this interrupt resides. When    you eXclude a
portion of the address space of a ROM that QEMM    Stealths, the underlying code that was
formerly there returns.

You can get an idea where this interrupt is by looking at the    First Meg/ Interrupts screen of
Manifest, as it reports the    beginning address of this interrupt. The acid test is to do an   
ANALYSIS with all the ROMs eXcluded, which will report what    portion of the ROM's address
space is being addressed directly.    Typically, only an 8K eXclude is needed. If the handler for 
the target interrupt is being replaced entirely by the new    interrupt handler, then the ROM's
interrupt handler is never    called. In this case, no eXclude is necessary. To be sure of    this,
you should still run an Analysis. (See the ANALYSIS    section of your Manifest or QEMM
manual.)

Q. What if some other program complains about StealthROM's interrupt
diversion?

A. Some programs, when they load, check to see where the interrupt    handlers they expect
to use point. If an interrupt handler    they expect to use is not pointing into a ROM, they
think that    an interrupt they wish to manage is already used by another    program, and
incorrectly assume that there is a conflict. Such    programs will see Stealthed interrupts
pointing into QEMM's    code, rather than ROM, and may refuse to run. If such a    program
cannot be configured to ignore QEMM's diversion of the    interrupt in question, then this
interrupt must be XSTIed and    the appropriate eXclude found, by the means described
above.

Some programs make a copy of the video ROM in RAM, and divert    interrupt 10 (the video
interrupt) into this new location for    the video ROM's code. Such programs (RAMBIOS.SYS,   
FASTBIOS.SYS, RAPIDBIO.SYS are some examples) may refuse to    load if interrupt 10 has
been diverted. The best solution to    this problem is to instead use QEMM's ROM=
parameter, which    instructs QEMM to perform this same service without using any   
addresses in the first megabyte of address space. If you wish    to use such a program
anyway, and it has the above complaint,    then you must use XSTI=10. No eXclude is
necessary, because    such drivers usurp the video ROM entirely and INT 10 is never    called
again.

Q. What is FSTC?

A. The purpose of the FSTC parameter is to make the ANALYSIS    procedure accurate. When
QEMM Stealths a ROM, certain tables    have to be stored by QEMM in its own data area. For a
video    ROM, this table occupies 12K; for a disk ROM, this table    occupies 0.1K (If you have
no explicit disk ROM, this table is    in the system ROM.) When a ROM is being Stealthed, but
the    address in which the ROM resides is eXcluded, as with    X=C000-C7FF, then QEMM
won't need to make copies of these    tables in its own data area. QEMM will automatically
save    memory by NOT making copies of the tables. This means that    when you do eXclude
the portion(s) of the ROM where these    tables are stored, the ROM will be accessed directly.
(This    only holds true when you have used an eXclude.) This will cause    Analysis to report
that a portion of the address space is OK    (when eXcluded) even though it would not be
accessed directly    were it not eXcluded.

FSTC (FORCESTEALTHTABLECOPY) forces QEMM to make copies of    these tables so that

inappropriate eXcludes are not recommended    for the above reason. FSTC should only be
used when you are    testing a portion of a ROM's address space for direct access by   
eXcluding the whole ROM. It is not an appropriate parameter    for a final configuration.

SUMMARY

The XSTI parameter is rarely needed. If you are loading any    driver OTHER THAN QEMM
7.0's DOSDATA.SYS before QEMM in your    CONFIG.SYS file, move QEMM above this driver.
This step alone may    solve the problem without the use of XSTI.

If you decide to use XSTI, you MUST determine the appropriate    eXclude that will return the
ROM code for handling the XSTIed    interrupt to the address space it formerly occupied,
because QEMM    will no longer restore the ROM's code for the interrupt to the    Page Frame
and divert the interrupt there when it comes in.

Return to Technotes Main Menu.

QEMM:    General Troubleshooting

Quarterdeck Technical Note #241

This is a very general guide to troubleshooting QEMM, and provides either quick fixes or
references for additional    information. It does not provide the detail available in the QEMM   
manual, which you should also consult. The troubleshooting    section in Appendix A has
many quick fixes for common problems.

As you proceed through this guide, please record carefully the    results of each step. This is
important; Quarterdeck Technical    Support may need this information, and if you can
provide a record    of it, we can address your problem much more efficiently. In any    case,
you will find that this saves you time and trouble in    further troubleshooting.

If your problem relates to one of the following, refer to the referenced technote:

A product-specific conflict (PRODUCTS.TEC)

Exception #6, #12, #13    (EXCEPT13.TEC and EX13FLOW.TEC)

StealthROM    (STLTECH.TEC and STEALTH.TEC)

Microsoft Windows    (WINFLOW.TEC)

MagnaRAM 2.0    (MAGNARM2.TEC)

Stacker    (STACKER.TEC)

SuperStor    (SSTOR.TEC)

MS-DOS 5    (DOS5.TEC)

MS-DOS 6    (MSDOS6.TEC)

DR-DOS or Novell DOS    (NW&DRDOS.TEC)

High RAM Conflicts    (EXCLUDE.TEC)

"Cannot find ROM Handler for INT xx" Error Message    (XSTI.TEC)

Bus-mastering Device or SCSI Hard Drive    (BUS-MAST.TEC)

Maximizing Conventional Memory    (MAXMEM.TEC)

Parity Errors    (PARITY.TEC)

Consult the note CONTACT.TEC or the Passport Support Brochure that    accompanies your
copy of QEMM for more information on contacting    Quarterdeck.

Beginning the Troubleshooting Process:

If your system will not boot normally after installing QEMM, begin    with Section A below.
If your system does boot normally, but you    experience problems later on, begin with
Section B below.

For the purposes of this troubleshooting guide, QEMM is    comprised of the QEMM386.SYS
driver (which provides EMS, XMS, VCPI    memory management, High RAM, and
miscellaneous other services) and    three other significant features, installed as separate
drivers.    These are:

DOS-Up, which includes DOSDATA.SYS and DOS-UP.SYS

QDPMI Host, which utilizes QDPMI.SYS

Stealth DoubleSpace, which utilizes ST-DSPC.SYS (ST-DBL.SYS in v7.0)

QSETUP and Manifest should be very helpful as you troubleshoot any    problems that you
may have with the QEMM package. Manifest    provides detailed reporting on various aspects
of your system's    configuration, and, on its Hints / Overview and Hint / Detail    screens,
suggestions for improving your system's use of memory.    You may use QSETUP to review or
change QEMM parameters, to enable    or disable the other drivers that come with the QEMM
package,    and/or to edit CONFIG.SYS and AUTOEXEC.BAT. We will use QSETUP in    many of
the steps below. To run QSETUP, simply change to the QEMM    directory, and type QSETUP at
the DOS command prompt. Though    QSETUP runs as a Windows program, you may find it
quicker to run    QSETUP from the DOS prompt.

OPTIMIZE's /RESTORE parameter will allow you to restore past    configurations quickly and
easily. See the QEMM manual for more    details on OPTIMIZE /RESTORE.

Section A -- Recovering Easily from a System Failure

If your machine fails to boot properly after QEMM has been installed,    you may recover
easily.

1) Reboot your machine. Use the power switch if necessary.

2) Wait until you hear a beep; then hold down the Alt key until    the boot sequence stops. If
your system does not beep on    bootup, hold down the Alt key after you hear the floppy
drive    being accessed. When the boot sequence stops, you will see a    message from
DOSDATA or from QEMM. If the message is from    QEMM, proceed directly to item (4) below.
If the message is    from DOSDATA, proceed to item (3).

3) If the message is from DOSDATA, prepare to hold down the Alt    key again. Tap the Escape
key to unload DOSDATA, and    immediately hold down the Alt key again.

4) You will see the following message "QEMM: Press Esc to disable    QEMM or any other key
to continue with QEMM." Press the Escape    key. Your system should then proceed with the
boot sequence.    QEMM will not be loaded, and no programs will be loaded into    High RAM.
You will likely see messages noting that there is    not enough room to load your programs
high; these messages are    expected and no harm should result to your system as a   
consequence. Proceed to Section B.

Section B -- Determining if QEMM is the Problem

The first thing to determine is whether your difficulty is    associated with the QEMM package
at all. There are two lines in    your CONFIG.SYS that read:

DEVICE=C:\QEMM\DOSDATA.SYS

DEVICE=C:\QEMM\QEMM386.SYS [parameters]

Using QSETUP, Manifest, or a text editor, disable QEMM entirely by    placing the word "REM"
before the word "DEVICE" on each line;    reboot your system and try to reproduce the
problem.

If the problem persists in exactly the same way as it always has,    you can be reasonably
sure that neither QEMM nor its associated    drivers are the cause (since neither QEMM nor its
drivers are    active at this point). Make a note of this, and contact the    vendor of the faulting
application for assistance.

If this does relieve the problem, note that the problem does not    persist when QEMM is
inactive, and proceed to section C.

Section C -- Conflicts with DOS-Up, QDPMI, and Stealth D*Space

1) Disable the DOS-Up, QDPMI, and Stealth DoubleSpace features if    any of them are active.
Do this by running QSETUP, going to    the main menu, and selecting each feature in turn.
Answer "No"    when you are asked if you would like to enable each one. Note    that you
should choose "No", and not "Partial" in response to    the DOS-Up option. Note also that if
you are not using DOS 6's    DoubleSpace, the option to enable or disable Stealth   
DoubleSpace will not appear. Return to QSETUP's main menu, and    select S for Save
Configuration and Quit. If you are offered    the opportunity to run OPTIMIZE, do NOT do so at
this time.    Reboot your machine without running OPTIMIZE.

2) If your problem is now solved, one of the QEMM features you    have just disabled is likely
in conflict with some other aspect    of your system. Re-enable each feature, one at a time,
and    write down which feature you are enabling. It is likely that    your system will fail before
you re-enable the last feature.    Write down the one that appeared to cause the failure; it is   
likely that this feature is the cause of the conflict. To be    sure of this, re-eanble all features
except the one that seems    to be causing the conflict. Write down the results of this   
testing, and then proceed to section E below.

3) If your problem persists, but was solved by disabling QEMM in    Section A above, the
problem is likely related to the    QEMM386.SYS driver. Write this down, and proceed to
Section D    below.

Section D -- Troubleshooting with the QEMM386.SYS Driver

Again, in your CONFIG.SYS file, there is a line that reads:

DEVICE=C:\QEMM\QEMM386.SYS [parameters]

Steps 1-5 in this section involve editing the [parameters] on this    line, and nothing else. You
may use a text editor such as DOS'    EDIT, or the CONFIG.SYS editor in Manifest or QSETUP
to make these    changes. Every time you change the parameters on this line, you    must
reboot your computer for them to take effect. Write down the    results of each step.

1) If there is a Stealth parameter ("ST:M" or "ST:F"), remove it    and reboot. If this solves
your problem, refer to the QEMM    parameter STEALTHROM for an explanation of the
parameter, and    then refer to the technote "STEALTH TROUBLESHOOTING" (under    the
filename STEALTH.TEC) and follow its instructions. If    removing the Stealth parameter fails,
note the failure and    proceed to Step 2.

2) Add the parameter "DB=2" to this line and reboot. If this    solves your problem, refer to

the QEMM parameter DISKBUF, and    to the technote "BUS-MASTERING DEVICES AND
QEMM" (under the    filename BUS-MAST.TEC) for an explanation. If adding the DB=2   
parameter fails, note the failure and proceed to Step 3.

3) Add the parameter "X=A000-FFFF" to this line and reboot. If    this solves your problem, it
is likely tha there is a conflict    between QEMM's placement of High RAM and some piece of   
hardware on your system. To resolve the problem, refer to the    QEMM Analysis Procedure
(page xxx), or refer to the technote    QEMM ANALYSIS PROCEDURE FOR SOLVING MEMORY
CONFLICTS    ("EXCLUDE.TEC" and follow the instructions for the Analysis    procedure. If this
EXCLUDE parameter fails, note the failure    and proceed to Step 4.

4) Remove all the parameters on the QEMM386.SYS line and add:

APM:N BE:N BOOTKEY:Y CF:N DB=2 DM=128 FILL:N IOTRAP=64 LD MR:N    P:VME:N RH:N
SH:N TM:N TR:N VDS:N WC:N XBDA:N ON

then reboot. (Note that all of these parameters should be on    the same line, the
QEMM386.SYS line.) If this does not solve    your problem, go to Step 5.

If this does solve your problem, it is probable that one (and    only one) of the parameters
above is required. All of these    parameters, even taken together, do not seriously handicap
the    usefulness of QEMM. All together, they cause QEMM to use only    2K more conventional
memory, 116K more extended memory, and    will not cause QEMM to be any slower, except
on a Pentium.    You can find the one(s) you need by eliminating some and    retaining others,
noting the changes that you make each time.    An efficient way of doing this is to remove
half the list,    writing down the parameters that you have removed. If the    problem returns,
one of the parameters that you have removed    is the likely solution. If the problem does not
return, one    of the parameters still on the line. Continue to remove and    restore parameters
in this manner until you find the one that    is required to solve your problem. When you are
finished, you    may consult the parameters section of the QEMM manual for an    explanation.

5) If your system is still not working properly, add the    parameter "NOEMS" and reboot. If
this does not solve your    problem, proceed directly to Step 7. If this solves your    problem,
some program that uses expanded memory is probably    misbehaving, since this parameter
causes QEMM to cease    providing expanded memory. Write this information down, and    go
to Step 6.

6) In order to verify that the problem is with a program that is    abusing expanded memory
in general, try to reproduce the    problem with DOS' memory managers. Add REM to the
beginning    of the QEMM386.SYS line in CONFIG.SYS, and add the following    three lines
immediately beneath the QEMM line:

DEVICE=C:\DOS\HIMEM.SYS

DEVICE=C:\DOS\EMM386.EXE RAM ON 1024

DOS=UMB

Reboot your system, and try to reproduce the problem. If the    problem recurs, the problem
is unrelated to QEMM, but instead    is caused by some program that is mishandling
expanded memory    in some way. Note this important information, and contact the    vendor
of the faulting application.

7) Rename your AUTOEXEC.BAT to TEST.BAT, and copy your CONFIG.SYS    file to another
called C.SYS. Edit your new CONFIG.SYS with    just the QEMM386.SYS line and "FILES=40",

then reboot and    attempt to reproduce the problem. If this solves the problem,    run
TEST.BAT. If the problem recurs, there was a conflict with    something in your old
AUTOEXEC.BAT. If the problem does not    recur after you run TEST.BAT, there was likely a
conflict with    something in your old CONFIG.SYS. Restore all of the file    that WASN'T a party
to the conflict, and then restore, one    line at a time, the lines in the file that WAS a party to
the    conflict, rebooting and testing after adding each line. You    should be able to determine
quickly which line was causing the    problem.

It is possible that in this section, various elements of your    system may not work properly,
since there may be drivers in    both CONFIG.SYS and AUTOEXEC.BAT that are essential for
the    operation of a given device. In this case, restore the lines    necessary for the device in
both CONFIG.SYS and AUTOEXEC.BAT.

In any case, if you have not found a solution to the problem,    check Step 8, and then
proceed to Section E.

8) It is possible that you have more than one problem, and that    consequently you may
need more than one of these solutions.    When you have solved one problem, and are still
having others,    keep that solution and start over.

Section E -- If You Have Not Yet Resolved the Problem

Quarterdeck Technical Support is willing and ready to assist you    with any compatibility
problems that you might experience.    However, you can help us to help you better by
making sure that    you have clear notes on all of the steps you have taken above.    Even if
these steps did not solve the problem for you, a record of    your troubleshooting will put you
in a much better position to get    help, and will save you time.

If you are calling from the United States and you have a touchtone    phone, we suggest you
try 1-800-ROBOTECH, Quarterdeck's toll-free,    automated technical support hotline. 1-800-
ROBOTECH can assist    with the most common technical questions and offer a variety of   
solutions. Navigation through 1-800-ROBOTECH is accomplished by    pressing numbers on
your phone's keypad to jump directly to the    topic that you are interested in hearing about.
The system will    instruct you every step of the way. Call 1-800-ROBOTECH    (1-800-762-
6832), toll free, 24 hours a day, 7 days a week,    including Holidays.

If you contact us by mail, fax or on one of our BBS systems,    please include the following
information:

Your Quarterdeck customer VIP number which you receive when you    register your copy of
QEMM with Quarterdeck.

The version number and serial number of QEMM. To find these out,    type QEMM /REG at the
DOS prompt.

If you are contacting us by mail or fax include a printout from    Quarterdeck's Manifest. If
you are using the DOS version of    Manifest, press F2 to print, and select "All Manifest" from
the    "What to Print" portion of Manifest's print menu. If you are using    the Windows version,
select Print from the File menu, then select    All Manifest. If you have other important
hardware in the system,    or if Manifest's list is incomplete, please include any additional   
information you think may help us diagnose your problem.

If you cannot run Manifest, print out your CONFIG.SYS and    AUTOEXEC.BAT files, and write
down what hardware (include the make    and model) and software (include the version) you
are using.

Give a precise description of the problem that is occurring, and    the exact text of any error
messages. Describe in detail the    results of your troubleshooting efforts.

Please tell us how to respond to you via mail, fax or one of the    other methods we support.
See your Quarterdeck Passport booklet    for information on contacting Quarterdeck Technical
Support.

If you are contacting a technical support representative by    telephone:

- Be at your computer.

- Please gather the information listed above.

- When you contact our technical support representative, you need    only give your customer
VIP number or product serial number and    a brief description of your hardware, software
and the problem    you are encountering. If the support technician requires    additional
information, he or she will ask for specific details.

Return to Technotes Main Menu.

MS-DOS 6 and PC DOS 6 support multiple paths of execution through CONFIG.SYS. DOS 6
can use the CONFIG environment variable and the GOTO %CONFIG% batch statement to
support separate paths of execution in the AUTOEXEC.BAT that correspond to the different
CONFIG.SYS configuration paths. When you use QSETUP to add a new path to your DOS 6
multiple configuration CONFIG.SYS file, QSETUP does not create an entirely new branch in
the AUTOEXEC.BAT to correspond to your new CONFIG.SYS path. Instead, QSETUP makes
sure that the new configuration path and the existing one that it was based on will execute
the same commands in AUTOEXEC.BAT.

If you want the new path to execute different AUTOEXEC.BAT commands than the path from
which it was created, you must edit your AUTOEXEC.BAT file to create two separate
branches to replace the common branch that QSETUP creates. See the DOS 6 manual for
more information on the CONFIG variable.

With some expanded-memory-using RAM disks, the QuickBoot feature may not clear the
contents of the RAM disk when you quickboot. Quickboot does not intentionally preserve the
contents of any RAM disk and should not be relied upon for this purpose. To ensure that your
RAM disk is cleared, warm boot normally by pressing Ctrl-Alt-Del twice in quick succession,
thus bypassing quickboot.

READ ME File

This file includes tips to help you get the most out of QEMM.    For that reason alone, it is
worthwhile reading!    It also contains last-minute information that did not make it into the
manual and a few corrections to the manual.

DOS-Up Options and Windows 95

QEMM Technotes

Saving Disk Space For Windows-Only Users

Less Conventional Memory Available

QSETUP and the CONFIG Variable

MS-DOS 6.22 and Missing Labels in AUTOEXEC.BAT

Optimize and MULTICONFIG INCLUDE Statements

Optimize's Conventional Memory Requirements

Optimize's Stealth Testing Process

PCMCIA Hardware and Software

FIXINT13.SYS and ULTRAFIX.SYS

QUICKBOOT and Expanded Memory RAM Disks

Video Cards and Exclusions

DESQview/X Server and QEMM's VCPISHARE Parameter

Corrections to the QEMM Reference Manual

 Return to Hints, Technotes, and README Menu

ROM stands for Read-Only Memory--memory that is fixed in content and cannot be
changed. The contents of ROM memory are not lost when the power is turned off. ROMs
generally occupy addresses in upper memory. The BIOS and video services are among the
programs contained in ROM.

Reclaim top memory
This feature enables or diables QEMM's ability to reclaim top memory, adding that memory
to QEMM's memory pool. By default, QEMM reclaims unused top memory on Compaqs and
other systems on which QEMM recognizes the presence of top memory. This feature typically
adds 256K to 384K of RAM to QEMM's memory pool. Manifest's QEMM Memory screen will
include a Top Memory row if QEMM is reclaiming top memory on your system.
To enable or disable QEMM's ability to reclaim top memory:

Select Yes to enable reclamation of top memory.
Select No to disable this feature.

This feature is on by default. If you disable it, QEMM Setup adds the TM:N parameter to the
QEMM386.SYS line in CONFIG.SYS.
If QEMM has a problem reclaiming top memory on your system, you may experience a hang
or reboot when QEMM386.SYS loads.

Reclaim unused shadow memory
This option lets you enable or disable QEMM's feature that reclaims unused portions of
shadow memory. When QEMM reclaims shadow memory, it adds that memory to QEMM's
memory pool for general use, typically giving you about 192K more usable RAM. By default,
QEMM reclaims unused shadow memory, giving you more expanded or extended memory on
systems that have any of the following: Chips & Technologies LEAP, AT386, NEAT, or SCAT
ShadowRAM; or NEC, OPTI, PEAK or TOPCAT shadow memory,
To have QEMM reclaim unused shadow memory:

Select Yes to reclaim shadow memory.
Select No if you do not want QEMM to reclaim shadow memory.

QEMM reclaims shadow memory by default. When you disable the feature that reclaims
shadow memory, QEMM Setup adds the SH:N parameter to the QEMM386.SYS line in
CONFIG.SYS.
Manifest's QEMM Memory screen will include Shadow RAM information if QEMM is reclaiming
shadow memory on your system. On some systems with unusual types of shadow memory,
QEMM may have a problem reclaiming the unused portion. A common symptom is continual
rebooting when QEMM loads, although other symptoms can occur. Disabling the shadow
memory feature is a common troubleshooting technique.

Relocate Extended BIOS Data Area
This selection tells QEMM how to treat the XBDA (Extended BIOS Data Area).
To relocate the XBDA:

Select No to tell QEMM not to move the XBDA.
Select Auto to have QEMM determine where to most effectively place the XBDA.
Select Low to move the XBDA to low conventional memory.
Select High to force the XBDA into High RAM.

Below is a more detailed summary of these options:
AUTO is the default. QEMM moves the XBDA into High RAM unless it detects that you have
a suspend/resume feature, that you have a machine (like some IBM ThinkPads) that fails
with the XBDA in High RAM, or    you place the SUSPENDRESUME (SUS) parameter on the
QEMM386.SYS line in CONFIG.SYS. In these cases, QEMM moves the XBDA into low
conventional memory.
If you select No, QEMM Setup adds the XBDA:N parameter to the QEMM386.SYS line in
CONFIG.SYS. The XBDA will remain at the top of conventional memory where it will prevent
video filling or the use of VIDRAM and will decrease the size of windows in DESQview and
DESQview/X. You should choose No if you have a system or a program that expects the
XBDA to be at the top of conventional memory. The symptom of this problem is usually a
system crash, which can occur at boot time or later.
Low gives most of the benefits of moving the XBDA, and so is a less drastic way to try to
solve any XBDA-related problem than choosing No.
You may want to select High (to save 1K of conventional memory) if QEMM is loading your
XBDA low. If you do this on a laptop PC that has a Suspend/Resume feature, or on an IBM
ThinkPad, your system may not work properly.
Moving the XBDA into High RAM lets VIDRAM and video filling work, increases the size of
windows in DESQview and DESQview/X, and saves 1K of conventional memory. Moving the
XBDA to low memory does not save conventional memory but gives all the other benefits
listed above.
To find out where your XBDA is loaded, see Manifest's First Meg BIOS Data screen. If the third
line on this screen does not say "0E: Extended BIOS Segment," then you do not have an
XBDA.
 If you do have an XBDA, check the four-digit hexadecimal address of the XBDA. If this
address is 9FC0, then the XBDA has not been moved at all. If the address starts with 0 or 1,
the XBDA has been moved to low conventional memory. If the address starts with a letter (A
through F), then the XBDA is in High RAM.

Remove or set address of page frame
This option lets you specify the starting address of the EMS page frame or specify that
QEMM should not create a page frame.
To specify the EMS page frame select one of the following:

Select None to eliminate the page frame. This will disable the StealthROM and
Stealth D*Space features and make expanded memory unavailable for programs. If you do
not use Stealth or programs that use EMS, eliminating the page frame will make 64K of
upper memory addresses available for High RAM, at the expense of all the benefits of
having a page frame. We strongly recommend that you leave the page frame enabled.

Select Auto to have QEMM choose the page frame address based on your system
configuration.

Select Address if you want to specify a particular address for the page frame. Then,
click in the adjacent field and enter the 4-digit hexadecimal segment address for the
beginning of the page frame. The address must be on a 16K boundary (i.e., its last 3 digits
must be 000, 400, 800 or C00). You can specify the starting segment address of the page
frame if a different location will consolidate two smaller High RAM regions into one large one,
or if you need to place the page frame at the starting address of one of your ROMs to make
the ROM work with the StealthROM feature. However, you should not set the page frame
address if you do not know how to avoid conflicts between the page frame and ROM,
adapter RAM, or video RAM.
Depending on your selection, QEMM Setup places the FR=NONE or FR=xxxx (where xxxx is
a hex address) parameter on the QEMM386.SYS line in CONFIG.SYS, or removes the FR
parameter from the QEMM386.SYS line.

QEMM Features

The Features page of QEMM Setup lets you review or change certain aspects of QEMM's
behavior. When you select QEMM Features by clicking on its tab, you see a list of options. If
you move the mouse pointer to an option, the option will become highlighted and you will
see a brief description of what that option does in the Feature Information area near the
bottom of the window.

Each QEMM Feature adds, deletes or modifies a parameter on the QEMM386.SYS device line
in CONFIG.SYS. You can see QEMM's device line above the list of options. When you select an
option, you will see how it modifies the device line. You can even edit the device line--just
click at the point you want to edit.

IMPORTANT: After enabling or disabling any QEMM Feature, you reboot your PC in order for
the change to take effect.

The options on the QEMM Features page are:

Fill Upper Memory with RAM

Copy ROMs to RAM

Enable QuickBoot

StealthROM Method

Set Size and Type of Disk Buffer

Reclaim Unused Shadow Memory

Reviewing and Editing Proposed Configuration Files

Options selected from the various QEMM Setup screens can result in changes to your
CONFIG.SYS, AUTOEXEC.BAT, SYSTEM.INI, WIN.INI, and FREEMEG.INI files.    Changes that
result from your selections are not saved until you choose Save at the bottom of the QEMM
Setup display.

To review proposed changes to these files, select one of the following options from the File
menu on the menu bar:

Proposed CONFIG.SYS
Proposed AUTOEXEC.BAT
Proposed SYSTEM.INI
Proposed WIN.INI
Proposed FREEMEG.INI

The file you select is displayed and can be reviewed and edited as desired.    At any time
during the editing process, you can click Reset to discard any changes you have made and
continue editing.   
When you finish reviewing and editing the file, click OK to close the editor window or Cancel
to discard any changes you have made to the file and close the window.    If you choose OK,
you must still select Save when you return to QSetup's main screen in order to save your
changes.

If you work exclusively in Microsoft Windows, you can delete the contents of the QEMM\
TECHNOTE subdirectory, at a savings of about 400K of disk space. All the QEMM technotes
are also included in this help file, and can be read by selecting the Technote option from
QEMM Setup for Windows Help menu.

Set size and type of disk buffer
This option allocates additional memory to buffer disk reads and writes. Buffering may be
necessary if you are experiencing problems with QEMM on a system with a bus-mastering
hard disk or if there are conflicts between an EMS-using disk utility and QEMM's
StealthROM feature.
To set the size and type of disk buffer:

Select None to remove any disk buffering.
Select Auto to have QEMM attempt to determine whether you need a disk buffer to

resolve problems with a bus-mastering hard drive.    If it detects a bus-mastering conflict with
the drive from which QEMM loads, QEMM Setup will add the parameter DB=2 to the
QEMM386.SYS line in CONFIG.SYS.

Select Full to have QEMM intercept all disk reads and writes to resolve problems with
a bus-mastering hard disk.    This adds the DB=xxx parameter to the QEMM386.SYS line in
CONFIG.SYS. If you select the Full option, you should set the number of kilobytes to reserve
for the disk buffer; just click in the box on the right side of the field and type a number. 2
and 10 are commonly-used values. This type of disk buffering eliminates problems with bus-
mastering hard disks, but with a penalty in conventional memory and disk performance.

Select Frame to resolve conflicts between an expanded memory-using disk utility
and StealthROM. This selection tells QEMM to buffer only disk reads and writes into the EMS
page frame. It adds the DBF=xxx parameter to the QEMM386.SYS line in CONFIG.SYS. If you
select the Frame option, you should set the number of kilobytes to reserve for the disk
buffer; just click in the box on the right side of the field and type a number. 2 and 10 are
commonly-used values.

Set up QEMM for troubleshooting
If you wish to troubleshoot a particular problem, you can set up QEMM for troubleshooting.
When you set up QEMM for troubleshooting,    QEMM Setup will place the following ten
parameters on the QEMM386.SYS line in CONFIG.SYS:
 DB=2 SH:N TM:N TR:N CF:N FILL:N MR:N RH:N XBDA:N BE:N
To set up QEMM for troubleshooting:

Select Yes to add the troubleshooting parameters,
Select No to remove the troubleshooting parameters.

These are not the only QEMM386.SYS parameters that can solve problems, but they are the
easiest to try as part of a one-step troubleshooting process. If your problem goes away after
you enable the troubleshooting parameters, you should try eliminating the parameters one
by one until you find the parameter that solved the problem, then take all the other
troubleshooting parameters off the QEMM386.SYS line. Be sure to reboot whenever you add
or delete parameters.

SkipFile List

QEMM’s FreeMeg feature normally safeguards the first megabyte of memory whenever any
Windows program loads. However, in case a particular program does not load properly when
FreeMeg is active, QEMM keeps a list of programs for which it deactivates FreeMeg. Only the
programs on this SkipFile list load without FreeMeg’s protection; all other programs will still
be unable to monopolize precious first-megabyte memory when they are loading.

To add a program to the SkipFile list, click the Add button next to the list, and type or select
the name of the program, complete with file extension, into the Add to SkipFile List dialog
box. If you do not see the name of the file you want to add to the list, select a new drive or
directory

To edit the Skip File list, select the entry on the list that you want to change and click the
Edit button next to the list. Use the Edit Skip File List dialog box to change the entry.

To delete an entry from the Skip File list, select the entry and click the Delete button next to
the list.

StealthROM is a QEMM feature that creates additional mappable areas at the addresses used
by your PC's ROMs. By default, QEMM will turn these areas into High RAM that can be used
to load TSRs, device drivers and selected parts of DOS. When StealthROM is enabled, QEMM
monitors the interrupts pointing into those ROMs. When those interrupts occur, QEMM maps
the appropriate ROM into the page frame and passes the interrupts to the ROM's location in
the page frame. In general, the ROMs targeted are your system ROM, video ROM and disk
ROM, although certain other ROMs may be "Stealthed" as well.
With the ROMs out of the way, the amount of usable upper memory is greatly increased.
Depending on the location of the ROMs, High RAM regions can become quite large and able
to accommodate more or larger device drivers and TSRs.

Stealth Troubleshooting

Quarterdeck Technical Note #205

StealthROM may seem mysterious and cryptic, but it really is not.    This note tells you how
to diagnose and solve problems related to    the StealthROM feature of QEMM. Although this
note may appear    lengthy, it is detailed and informative. For those who are more   
interested in fast solutions, the path to resolving a problem is    quite straightfoward and
quick.

Q. What do I need to know first?

Before beginning the steps outlined in this technote, please    review the information in
Quarterdeck Technical Note #248,    "Product Compatibility Information" (PRODUCTS.TEC),
which contains    information on various hardware and software products that may    require
specific treatment with StealthROM.

If you are reading this technote because QEMM displayed the    message "Disabling
StealthROM becauase QEMM cannot find the ROM    handler for INT xx", you should instead
refer to Quarterdeck    Technical Note #233, "QEMM and the XSTI Parameter" (XSTI.TEC).   

You may also wish to consult Quarterdeck Technical Note #168,    "QEMM's StealthROM
Technology" (STLTECH.TEC) for background    information on StealthROM and how it works.

Q. How do I resolve a conflict with StealthROM?

In almost all cases, the OPTIMIZE program that comes with QEMM    will detect and resolve
automatically any aspect of your system's    hardware or basic configuration that is
incompatible with Stealth.    OPTIMIZE cannot, however, anticipate the behaviour of
programs    that are not run as part of your CONFIG.SYS, AUTOEXEC.BAT, or    other batch
files that are CALLed as part of your system's startup    process. The following
troubleshooting procedure is divided into    simple steps, contained in several sections, to
address    compatibility issues with programs that are not run as part of the    startup process,
or that manage to evade OPTIMIZE's automatic    handling of StealthROM.

SECTION ONE       

1) The first step is to ascertain whether StealthROM is involved    with the problem. Remove
the StealthROM parameter (ST:M or    ST:F) from the QEMM device line in your CONFIG.SYS
file and    rerun Optimize. When Optimize completes, try to duplicate the    problem. If the
problem still happens, then StealthROM is not    causing the problem, and you should refer to
the troubleshooting section of your QEMM manual for further    information.    However, if
removing ST:M or ST:F solves the problem, proceed to Step 2.

2) Now that we have determined that StealthROM is involved in the problem, add
StealthROM    parameters ST:M and XST=F000 to the QEMM device line in the    CONFIG.SYS
file. Your QEMM line would look something like    this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XST=F000

Reboot the computer. If this step solves the problem, go on to    Step 3 immediately below; if
it does not, go to SECTION TWO.

3) If XST=F000 solves your problem replace this parameter with    X=F000-FFFF, reboot your

computer, and try again to create the    problem. The QEMM line in your CONFIG.SYS file
would look    something like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M X=F000-FFFF

If the problem persists, go to Step 4 below. If you cannot    recreate the problem with the
above line, add the parameter    FSTC to the end of the line as follows:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M X=F000-FFFF FSTC

and reboot. If this step solves the problem, continue on. If    it does not (and FSTC may not
work in all circumstances) then    remove the FSTC parameter and reboot with the previous
QEMM    line. In either case, run Manifest (by typing MFT from the DOS    prompt) and look at
the QEMM/Analysis screen. The last line    should look something like this:

Fn00 IIII IIII IIII IIOO

Since the entire F000-FFFF range is EXCLUDEd, Analysis here is    suggesting that the last two
4K pages of the F region are Okay    (that is, the EXCLUDE is appropriate for the region FE00-
FFFF)    and that the other pages are INCLUDEable (that is, the EXCLUDE    is not needed for
these pages). This is so because some program    or piece of hardware is trying to read the
contents of the last    two pages of ROM directly, rather than accessing them through   
interrupts. QEMM must be prevented from mapping High RAM over    this ROM to allow the
ROM to be be accessed directly. This is    done by using the EXCLUDE parameter. In our
example the target    region is FE00-FFFF; thus appropriate EXCLUDE is X=FE00-FFFF    and
the QEMM line would look like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M X=FE00-FFFF

This EXCLUDE allows StealthROM to do its job and costs only 8K    of High RAM.    If you are at
this point, your problem is solved and you do not need to continue with this technical note.

4) If XST=F000 solves your problem while X=F000-FFFF does not, try changing ST:M to ST:F,
and remove XST=F000.    You may end up with more High RAM with ST:F than with ST:M and
XST=F000.    However, if ST:F fails, remove ST:F and place ST:M and XST=F000 back on the
QEMM386.SYS line.

SECTION TWO

This section is ONLY for systems that have video ROMs--that is, systems with an EGA or VGA
video card.    CGA color and Hercules-compatible monochrome systems do not have video
ROM; If you have one of these systems, proceed to Section Three.

Manifest, on its First Meg Overview screen, will identify the ROMs    on your system when
StealthROM is inactive. On most systems, the    Video ROM is located at C000-C7FF and uses
32K of upper memory    address space. Some machines (particularly Micro Channel machines
such as the IBM PS/2 family) have a video ROM elsewhere,    generally at E000-E7FF. If this is
true of your system, you    should use XST=E000 (or wherever your video ROM begins)
instead of    XST=C000 in the QEMM386.SYS lines that follow.

5) If XST=F000 does not solve your problem, try XST=C000. The    QEMM line of the
CONFIG.SYS would look like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XST=C000

If XST=C000 does not work, go on to Section Three. If    XST=C000 does work, proceed to
Step 6 immediately below.

6) If XST=C000 solves the problem, try placing the page frame at    C000 by removing
XST=C000 and adding FR=C000 to the QEMM386.SYS line. Do this only if the entire C000
range is available--that    is, no device is using address space between C000 and CFFF for   
Adapter ROM or RAM. The QEMM line of the CONFIG.SYS would look    like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M FR=C000

If this works, you may find this an acceptable solution. All    the address space in which High
RAM can be created is being    used in this configuration, and you will want to stop   
troubleshooting here. If this step does not work (or if you    cannot put the page frame at
C000) go on to Step 7 below.

7) If XST=C000 solves the problem but you do not want to put the    page frame at C000 (or
cannot for some reason) then try the    parameter F10:N (or FASTINT10:N). By default QEMM
uses its own    code for some video functions, rather than the video ROM's own    code. The
F10:N parameter tells QEMM not to perform this    function. The QEMM line of the
CONFIG.SYS would look like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M F10:N

If this step works, all ROMs are being Stealthed at the expense    of some speed. You may
find this satisfactory, at which point    you may stop here. If you do not find the modest
decrease in    speed acceptable, or if this step does not work, proceed to    Step 8
immediately below.

8) If XST=C000 solves the problem but FR=C000 or FASTINT10:N does    not (or you either
cannot put the Page Frame at C000 or do not    want to use FASTINT10:N) then replace
XST=C000 with    X=C000-C7FF. The QEMM line of the config.sys would look like    this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M X=C000-C7FF

If replacing the XST=C000 parameter with X=C000-C7FF does not    work then you should
replace the X=C000-C7FF with XST=C000,    which will avoid all Stealth conflicts with your
system's video    ROMs; you may stop troubleshooting here.

If replacing the XST=C000 parameter with X=C000-C7FF works,    add the parameter FSTC to
the QEMM line:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M X=C000-C7FF FSTC

Reboot your computer. If this step works, continue on; if this    step does not work (and FSTC
may not work in all circumstances)    then remove the FSTC parameter and reboot with the
previous    QEMM line.

In either case, run Manifest (by typing MFT at the DOS prompt)    and look at the
QEMM/Analysis screen. The Cn00 line should    look something like this:

Cn00 OIII IIII OOOO OOOO

This indicates that the first 4K region of the C000 range (in    the video ROM) is being
accessed directly. This portion of the    address space must be EXCLUDED from QEMM's use

when StealthROM    is enabled. The appropriate QEMM line in the CONFIG.SYS would    be:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M X=C000-C0FF

SECTION THREE

9) On some machines there are other ROMs that can be Stealthed.    Typically these are disk
ROMs; sometimes they are associated    with network cards or with other peripherals. To
determine if your system has one of these other ROMs, boot your system without ST:M or
ST:F and check the First Meg/Overview screen in Manifest.    If you see more than two ROMs
listed, than your system has another ROM.    Troubleshooting    StealthROM with these ROMs
involves a similar procedure to    those above; That is, add XST=??00 (using the beginning
address    of that particular ROM). If this solves the problem, replace    the XST=??00 with the
appropriate EXCLUDE (X=??00-!!FF,    replacing ??00 and !!FF with the beginning and ending
addresses    of the ROM) to determine whether the problem is related to    Stealth or to the
fact that some portion of the ROM's address    space needs to be directly accessible.

If some portion of the address space must be EXCLUDED for    StealthROM to work you should
check Analysis with the FSTC and    X=??00-!!FF parameters on the QEMM line in a manner
similar to    that detailed in Step 3.

The trick of placing the page frame at the beginning of the ROM    may also work here as
well. If XST=??00 solves your problem,    try replacing it with FR=??00. This is possible if
there is a    64K portion of the address space that is either ROM or RAM    beginning at ??00,
and if ?? is a multiple of 16K.

10) Use XST=F000, XST=C000, and XST=??00 simultaneously for all    ROMs being
Stealthed. Then replace the XSTs one by one with    the appropriate regular Exclude
(X=F000-FFFF, X=C000-C7FF,    X=??00- !!FF...) and look at the QEMM/ Analysis screen of   
Manifest to see what portions of the address space need to be    directly available.

11) If ST:M with XST on all Stealthed ROMs fails, add the    following parameters to the QEMM
line we used in Step 10:

FB:N UFP:N VHI:N F10:N

If this works, remove the XSTs one at a time to determine    which one(s) you actually need. If
an XST alone does not    solve the problem, turn back to SECTION ONE for help in   
determining the appropriate XST or EXCLUDE while keeping the    above parameters. The
parameters are explained later in this    technote as well as in your QEMM manual.

12) If ST:M does not work, try ST:F instead. If ST:F does not    work, try ST:F XST=C000 (and
XST=??00) for Stealthed ROMs    other than the one(s) the page frame overlays.

13) If none of these steps solves the problem, Quarterdeck's    Testing and Compatibility
Department wants to know what    program or device is failing (and at what point). Please   
contact our Technical Support staff so that our technicians    can get all the necessary
information about your problem.

The following section contains questions and answers on various    aspects of Stealth and its
parameters. Again, you may wish to    consult Quarterdeck Technical Note #168, "QEMM's
StealthROM    Technology" (STLTECH.TEC) for background information on    StealthROM and
how it works.

Q. I have a ROM that is not being turned in High RAM by    StealthROM. Why?

QEMM's StealthROM feature relocates ROMs which are accessed    through the use of
interrupts. A ROM that is not Stealthed may    still have regions that are never used during
the system's    normal operation. Some disk ROMs, video ROMs, and devices that    only use
their ROMs during bootup (before the CONFIG.SYS is    loaded) fit into this category. You may
be able to get more    High RAM by INCLUDING these unused regions on the QEMM386.SYS   
device driver line in CONFIG.SYS. To find out what addresses    you can include, run the
Analysis procedure, then use the    INCLUDE parameter to include these addresses. Refer to
your    QEMM manual for further information on Analysis.

Q. What is FASTINT10:N?

When Stealthing a video ROM, QEMM replaces some of the video    ROM's routines with code
written by Quarterdeck. This    replacement code is suitable for almost all video cards. The   
FASTINT10:N parameter (which may be abbreviated F10:N) tells    QEMM not to use its code
but the code of the video ROM instead.    This in no way limits the amount of High RAM
StealthROM creates    and may be an acceptable solution for those users who need it.    It
should only be necessary on unusual video cards. If placing    the page frame at the
beginning of the video card's ROM works    or if a small regular exclude also solves the
problem you may    choose to use F10:N instead.

Q. What is FSTC?

In addition to program code, ROMs contain various tables of    information. A ROM may itself
access these tables directly.    When the ROM is being Stealthed normally, StealthROM will   
prevent direct access to the ROM by copying various tables into    QEMM's own data area,
which uses some extra memory -- usually    in High RAM. When a ROM is being Stealthed but
the address in    which the ROM resides is EXCLUDEd (as with X=C000-C7FF), QEMM    cleverly
figures out that it does not need to make copies of    these tables in its own data area. QEMM
therefore saves memory    by not making copies of the tables. However, if the copy is    not
made, portions of the ROM where these tables are stored    will be accessed directly. This will
cause Analysis to report    that a portion of the address space is OK when EXCLUDED even   
though it would not be accessed directly were it not EXCLUDED.

FSTC (which stands for ForceStealthTableCopy) makes the    Analysis procedure accurate by
forcing QEMM to make copies of    these tables so that inappropriate EXCLUDEs are not   
recommended.

Some system and video ROMs may not function properly with the    FSTC parameter. If this is
the case on your system you will    have to perform the Analysis procedure without the FSTC   
parameter. However, you should be aware in this case that some    of the EXCLUDE
statements that Analysis prompts you to use may    not be necessary. You can try reducing
these EXCLUDES on a    trial-and-error basis if you wish.

FSTC should only be used when you are testing a portion of a    ROM's address space for
direct access by excluding the whole    ROM. It is not an appropriate parameter for a final   
configuration.

Q. What is FB:N?

FB:N, short for FRAMEBUF:N, disables QEMM's feature of breaking    up disk reads into the
page frame and disk writes from the page    frame. FB:Y is the default with StealthROM; FB:N
is the default    without StealthROM.

Q. What is UFP:N?

When StealthROM is active, and when no program is using    expanded memory, QEMM
unmaps the memory left in the page frame.    This allows the ROM underneath the page
frame to be visible, in    case some program reads that ROM directly. However some   
programs use expanded memory and then free an EMS handle (which    is tantamount to
ceasing to use that expanded memory) and yet    expect the page frame to contain the
memory that they last    mapped there. The UFP:N (abbreviation for UNMAPFREEPAGES)   
parameter tells QEMM not to unmap the EMS page, which will make    such programs work
with StealthROM. Of course such programs    violate the EMS specification by abandoning the
EMS handle (and    apparently common sense) but expecting the page frame to    contain the
memory just released. UFP:N is the default without    StealthROM.

Q. What are advanced disk features? What is VHI:N?

The BIOS has a set of function calls intended for use by    multitasking programs. These are
INT 15h, functions 90h and    91h. The system ROM or disk ROM may issue the INT 15h, Fn
90h call    while it is waiting for the disk controller to read or write a    sector, allowing other
programs to execute during this wait.    When the sector is ready, the disk interrupt handler
issues an    INT 15h, Fn 91h, signalling the multitasking program that the disk    information is
ready to be processed by the system or disk ROM.

The "advanced features" of some disk caches hook this call to    allow your system to go
ahead and execute your current program    while the system or disk ROM is waiting for its
requested    sector. Although such caches properly preserve the stack and    register state for
the BIOS and the application when doing this    pseudo-multitasking, they do not preserve
the mapping of the    page frame. Therefore, if a BIOS call causes the page frame to    be
used (as is the case with StealthROM active), conflicts and    system failures could result.
Since most disk caches do not    preserve the page frame properly, QEMM automatically
suppresses    INT 15h, Fn 90h calls from the BIOS, effectively disabling    advanced disk
features. Caches that save and restore the page    frame when using advanced disk features
can use a programming    interface to QEMM to re-enable advanced disk features.

You may defeat QEMM's defeating of this feature with the    VIRTUALHDIRQ:N (VHI:N)
parameter on the QEMM device line in    your CONFIG.SYS file. If your cache uses INT 15h Fn
90h as one    of its advanced features, and does not save and restore the    page frame you
will crash or corrupt data on the cached    drive(s).

Q. Can I load a driver that uses ROM before QEMM?

You can load a device driver that uses a ROM before QEMM and    still Stealth that ROM by
loading the driver HOOKROM.SYS (found    in your QEMM directory) before you load this
driver. directory.    Here is an example of a CONFIG.SYS file that loads HOOKROM,    then a
driver that uses a ROM, then QEMM with StealthROM    enabled:

DEVICE=C:\QEMM\HOOKROM.SYS    DEVICE=C:\DISK\ROMDRIVER.SYS    DEVICE=C:\QEMM\
QEMM386.SYS RAM ST:M

For a more detailed explanation of HOOKROM, refer to XSTI.TEC    in your QEMM\TECHNOTE
directory.

Q. Why does my computer's BIOS Setup program fail when I use ST:M?

Many machines have a built-in System Setup program in the BIOS    ROM that can be popped
up via a keystroke. StealthROM may make    this feature inaccessible to you after your

system has booted.    Because the Setup program accesses the ROM directly, you must   
EXCLUDE the portion of address space where it is stored in    order for it to work after QEMM
has been loaded and StealthROM    enabled. On most machines this Setup program is found
in F000-    F7FF.

You may decide that you would rather have access to the Setup    program ONLY on bootup
and use this portion of the address    space for High RAM. Since you must reboot your
computer after    making changes in your CMOS Setup anyway, most users consider    this a
fair trade.

Q. How does StealthROM work? What can cause it to fail?

Refer to consult Quarterdeck Technical Note #168, "QEMM's    StealthROM Technology"
(STLTECH.TEC) for background    information on StealthROM and how it works and what can 
interfere with it.

SUMMARY

The StealthROM technology has been exhaustively tested. Due to    the wide variety of
software and hardware in the PC world,    however, StealthROM cannot be guaranteed to
work with every    configuration. The actual Stealthing of interrupts is very    successful. Most
failures are due to programs (or other ROMs)    trying to access a portion of the ROM directly
rather than by    means of interrupt, and most of these failures can be resolved via    the
techniques in this note.

If you experience a problem that you are unable to resolve using    the steps outlined in this
technical bulletin, Quarterdeck would    very much like to hear about it.

Return to Technotes Main Menu.

StealthROM method
This selection lets you enable or disable QEMM's StealthROM feature. StealthROM can
typically free 48K-115K of upper memory addresses which can then be used for High RAM
or expanded memory mapping.
To enable or disable StealthROM:

Select Mapping to enable StealthROM using the mapping method.
Select Frame to enable StealthROM using the frame method.
Select None to disable StealthROM.

If you select Mapping, QEMM Setup will add the ST:M parameter to the QEMM386.SYS line in
CONFIG.SYS. If you select Frame, Setup will add the ST:F parameter. If you select None,
Setup will remove the ST parameter.
QEMM offers to enable StealthROM during the installation process or the Optimize process if
it sees that you need additional High RAM. If you use DESQview or DESQview/X, you should
use the StealthROM feature even if QEMM has not enabled it for you.

Switching Between MS-DOS 6's Memory Manager and QEMM
QEMM provides all the functionality of MS-DOS 6's memory manager, and much more. For a
list of QEMM's features and how they stack up against DOS 6's memory manager, see
"QEMM Benefits and Features" in Chapter 1 of the QEMM Reference Manual.
If you are using MS-DOS 6 and you have run its MemMaker memory utility, you can switch
back to QEMM by running QEMM's Optimize program (assuming you have already installed
QEMM on your hard disk). To run Optimize, type OPTIMIZE at the DOS prompt.

If you ever want to switch back to MS-DOS's memory manager, simply run MemMaker again.
If you are using QEMM's DOS-Up feature, be sure to run QEMM Setup and disable DOS-Up
before you run MemMaker.   
If you are using QEMM's Stealth D*Space feature and you decide to switch back to MS-DOS
6's memory manager, the ST-DSPC.SYS driver will perform the same function as DOS's
DBLSPACE.SYS /MOVE or DRVSPACE.SYS /MOVE. It will allow DBLSPACE.BIN or
DRVSPACE.BIN to be moved into upper memory. You can replace ST-DSPC.SYS with
DBLSPACE.SYS or DRVSPACE.SYS, but you will suffer no ill effects if you do not.

Return to Hints Main Menu.

Technotes

Technotes are available on the following subjects:

Product Compatibility Information    (PRODUCTS.TEC)

QEMM Installation:    How it Modifies Your System (INSTALL.TEC)

QEMM:    General Troubleshooting (TROUBLE.TEC)

QEMM:    Running    Optimize with a Windows 95 Multiple Configuration Startup Menu
(W95BOOT.TEC)

MagnaRAM:    General Information and Troubleshooting    (MAGNARM2.TEC)

Microsoft Windows 3.1 and QEMM:    Advanced Troubleshooting (WINFLOW.TEC)

Exception Reports Explained (EXCEPT13.TEC)

Exception Reports:    Advanced Troubleshooting (EX13FLOW.TEC)

QEMM's StealthROM Technology:    An Overview (STLTECH.TEC)

Stealth Troubleshooting (STEALTH.TEC)

QEMM's XSTI StealthROM Parameter    (XSTI.TEC)

QEMM Analysis Procedure:    Solving Memory Conflicts (EXCLUDE.TEC)

Bus-mastering Devices and QEMM    (BUS-MAST.TEC)

Parity Errors    (PARITY.TEC)

Why the EMS Page Frame is Important    (FRAME.TEC)

QEMM Programming Interface    (QPI.TEC)

QEMM Utility Programs (QEMMUTIL.TEC)

QEMM's EMS and XMS Test Programs (TESTPRGS.TEC)

Maximizing Memory with PCMCIA (PCMCIA.TEC)

Maximizing Conventional Memory (MAXMEM.TEC)

QEMM with MS-DOS 5.0 (DOS5.TEC)

QEMM with MS-DOS 6.x    (MSDOS6.TEC)

QEMM with Novell DOS and DR-DOS    (NW&DRDOS.TEC)

QEMM and Stacker (STACKER.TEC)

QEMM and SuperStor    (SSTOR.TEC)

QEMM and XtraDrive (XTRADRV.TEC)

QEMM and Games (GAMES.TEC)

Contacting Technical Support (CONTACT.TEC)

 Return to Hints, Technotes, and README Menu

PC Tools (Symantec)
DoubleDisk (Vertisoft)
Fastback (Symantec)
NDOS (Symantec)
Btrieve (Novell)
QRAM (Quarterdeck)
Stacker (Stac Electronics)
MSCDEX CD ROM Driver (Microsoft)
XtraDrive (Integrated Information Technologies)

Undoing an Optimize
When you run QEMM's Optimize program, modifications are made to your CONFIG.SYS and
AUTOEXEC.BAT files and any batch file called by AUTOEXEC.BAT.

If for some reason you want to restore these files to their pre-optimized states, type UNOPT
at the DOS prompt. The files will be restored to the state they were in before you last ran
Optimize.
Optimize saves your last nine configurations as well as the configuration you were using
when you installed QEMM 8. (Your original configuration files will be saved regardless of the
number of times you run Optimize.)   

To see a list of these saved configurations, type OPTIMIZE /RESTORE at the DOS prompt.
You can then select which configuration you would like Optimize to restore.

Return to Hints Main Menu.

VIDRAM is a QEMM program    you can use to extend conventional memory when running
DOS text-based programs on a system with an EGA or VGA adapter. By using VIDRAM, you
can get an additional 64K-96K of memory to run such programs. However, you cannot use
EGA or VGA graphics while VIDRAM is on. For information on VIDRAM, see Chapter 6 of the
QEMM Reference Manual.

VIDRAM:    Extending Memory for Text-based Programs
QEMM's VIDRAM program can extend conventional memory by as much as 96K for running
DOS text-based programs. VIDRAM even extends conventional memory for DOS text
programs running in Microsoft Windows.
To use VIDRAM, your system must have an EGA or VGA video adapter or an adapter with
EGA or VGA capability (this includes VGA- compatible 8514A video adapters). Your PC must
have 640K of conventional memory and the programs that you run while using VIDRAM must
not use EGA or VGA graphics.
If your PC has an EGA or VGA video adapter, the 64K memory area just above conventional
memory (640K-704K or A000-AFFF hex) is reserved for use by graphics modes. When you
run text-based programs, that area is unused, so VIDRAM can appropriate it to extend the
contiguous conventional memory for running programs.
It is important to understand that you cannot run EGA or VGA graphics operations while
VIDRAM is in use. If you routinely use both large text-based programs and graphics
programs, you can turn the VIDRAM feature on when you need it for a text program and off
before you run a graphics program. If you are using an 8514A adapter, you can still use
8514 graphics programs while VIDRAM is enabled.

To turn VIDRAM on type VIDRAM ON at the DOS prompt.
This command will extend conventional memory into the EGA/VGA graphics area for a total
of 704K conventional memory.
To turn VIDRAM off so you can use graphics programs again, type VIDRAM OFF.

For more information on VIDRAM, including using VIDRAM with Microsoft Windows,
DESQview, and DESQview/X, and extending conventional memory an additional 32K, see
Chapter 6 of the QEMM Reference Manual.

Return to Hints Main Menu.

While manufacturers of video cards often recommend EXCLUDEing large regions of address
space -- for example, A000-C7FF -- this is almost never necessary, and these
recommendations should be taken with a good deal of skepticism.    QEMM is intelligent
enough to recognize the addresses used by video cards, and makes the
appropriate exclusions automatically.    QEMM INCLUDEs the B000-B7FF region by default,
and EXCLUDEs video RAM and ROM automatically when appropriate.    A few video cards
require that the address space between B000-B7FF be EXCLUDEd when using Microsoft
Windows high-resolution video drivers.    However, it may be possible instead to use
QEMMExclude=B000-B7FF in the [386Enh] section of the Windows SYSTEM.INI file.    This
parameter is documented in the Technical Reference section of the QEMM manual.

Hints, Technotes, and READ ME File

The following technical information is available from this page:
Hints

Getting the most out of QEMM.    Includes information on using QEMM with various
combinations of hardware and software.
Technotes

Detailed technical and troubleshooting information.
READ ME

QEMM's READ ME file that contains last-minute changes not covered in the
documentation.

Why the EMS Page Frame is Important

Quarterdeck Technical Note #295

This document explains how the EMS page frame can save you much more than the 64K of
High RAM than it requires, and why disabling the page frame is a bad idea.

Technical support staff at some companies will sometimes suggest that you disable the
expanded memory page frame in order to get 64K more High RAM. This is short-sighted and
wasteful. The expanded memory page frame is one of the most valuable resources available
to increase the amount of memory available to your DOS programs.

To understand the usefulness of the EMS page frame in a non-technical way, suppose an
empty space, 16" x 12", on an otherwise blank wall in your living room. Some people might
put up a painting (which displays one thing, all the time), but most would prefer a television
screen (in which you can see what you want, when you want to see it).

On a more technical level, the page frame is a 64K window of address space, typically
located above the 640K line, that can be shared and used by multiple programs to reduce
their overhead. To understand how expanded memory works, it is most useful to understand
the concept of mapping. Mapping is the process by which memory management hardware
and software can make memory appear in appropriate places at appropriate times; it is the
process of associating memory with an address other than its actual one. The expanded
memory specification (EMS) uses mapping to make portions of expanded memory appear
inside the EMS page frame when that memory is requested by a program. When a program
needs more memory than what is normally available to it under DOS, it can request that
some expanded memory be allocated from either an EMS board, or from the extended
memory managed and made to appear as expanded memory by a 386 memory manager
such as QEMM.

Expanded memory has no addresses of its own, but can be made to appear at a valid
address -- "mapped in". Expanded memory pages that are not currently needed may be
"mapped out" -- relieved of their addresses and put back into the expanded memory pool,
with code and data still intact. When the application needs these pages, they are "mapped
in" to the EMS page frame again. It is therefore possible for a program that uses expanded
memory to have access to much more memory than DOS itself can see of its own accord.
This is similar in concept to bank switching and paged memory systems, techniques used to
extend and add power to everything from mainframe computers to high-end UNIX systems
to DOS machines. Any program loaded on your system may use EMS at any time, even while
other programs have access to it.

Mapping is also useful for creating High RAM; in the same way as detailed above, memory
can be associated with unused addresses between 640K and 1MB. The 386 hardware and
QEMM cooperate to make memory appear where there is otherwise none; this memory is
called High RAM. Programs can be loaded into High RAM instead of conventional memory.
This allows more room in conventional memory for DOS programs. Unlike the page frame,
however, only one program at a time can occupy a block of High RAM.

QEMM's StealthROM feature uses mapping for yet another purpose. The 386 chip can be
made to map memory in or out of DOS' address space at any time. StealthROM uses the
page frame and 386 mapping to map system, disk, or video ROMs in and out of DOS'
address space when appropriate. More information on StealthROM is available in
Quarterdeck Technical Note #168, QEMM's StealthROM Technology (STLTECH.TEC).

The Quarterdeck Expanded Memory Manager, QEMM, provides expanded memory services,
allowing any EMS-using program on your system to take advantage of expanded memory.
QEMM itself also takes advantage of expanded memory for its StealthROM, SqueezeFrame,
and Stealth D*Space features.

Thus any advice to remove the page frame is penny-wise and pound-foolish. Remember that
the page frame is 64K of address space that can be used any program, at any time, to
access effectively as much memory as it likes. Some view the page frame as 64K of address
space that could be used to hold up 64K of programs, but it is much more useful to consider
the page frame as a place to access up to 32 megabytes of code and/or data for the
programs that use it. The distinction is very similar to the difference between a TV and a
painting.

On an example system, with the page frame enabled, StealthROM can create an 83K of
extra High RAM. This alone justifies the investment in the page frame, returning an extra
19K. Stealth D*Space can also use the page frame, reducing the overhead for Microsoft's
DoubleSpace or DriveSpace disk compression utilities by 40K. Stacker's EMS feature can
permit similar memory gains.

This example system is on a Novell network. If the page frame is enabled, one may use
EMSNETX as the network redirector instead of NETX. The overhead for the latter is 44K; for
the former it's a little less than 10K. When EMS is available, VSAFE, on that system, reduces
its overhead from 22K to 6.5K; MSCDEX goes from 35K to 15K, and so on. Thus 194K of code
is loaded for an investment of 64K, at a net savings of 130K.

In addition to these savings, EMS is also available to DOS application programs that can use
it. If an application uses EMS, it can reduce its conventional memory overhead dramatically,
and/or improve its performance. The Lotus 1-2-3 Release 2 series, the most widely-installed
version of Lotus, uses expanded memory; WordPerfect 5.1 similarly uses expanded memory.
Neither of these programs uses XMS (or any other flavour of) extended memory. VCPI, a
memory management specification for DOS Extended applications, depends on an expanded
memory manager to be present. Not all VCPI applications require a page frame, but many of
them attempt to map a page in the page frame, and refuse to run if they can't.

In summary, it is imprudent to disable the EMS page frame in order to create more High
RAM. For a 64K investment, you can typically recover a good deal more memory.

Return to Technotes Main Menu.

Windows

The Windows page of QEMM Setup lets you review or change the configuration of QEMM’s
Windows features: FreeMeg, Resource Manager, and MagnaRAM.

If you move the mouse pointer to one of the configuration options, the option will appear in
highlighted text and you will see a brief description of what that option does in the
Information area near the bottom of the window.

IMPORTANT:      After making changes to the Windows tab, you must restart Windows for the
changes to take effect.

The following options are available on the Windows page:

FreeMeg
Allocation Method
Block Size
SkipFile List

Resource Manager
Enable Resource Manager Option

MagnaRAM
Enable MagnaRAM Memory Compression
Compression Buffer Size
Compression Threshold
PAGEOVERCOMMIT

XSTI.TEC

This abridged QEMM technote is available in its entirety from the following sources:

Quarterdeck Technical Support BBS: XSTI.TEC
CompuServe: XSTI.TEC
Q/FAX: #233

PROBLEM:
When starting up your computer you see the following message:

QEMM386: Disabling StealthROM because QEMM could not locate the ROM
handler for INT XX"

POSSIBLE CAUSES:
A) You are loading a driver before QEMM which is grabbing interrupt XX.
B) A ROM is loading a handler for interrupt XX into RAM.
C) You are using a computer which was upgraded to an 80386 with an add-in board, such as

the Intel "Inboard PC."

SOLUTIONS:
A) Load the driver in question after QEMM. If it must be loaded before QEMM, load

HOOKROM.SYS before you load this driver.

During installation of QEMM, HOOKROM.SYS is installed in the QEMM directory. Assuming
that QEMM is installed in a directory called QEMM on your "C" drive, the new line would look
like this:

DEVICE=C:\QEMM\HOOKROM.SYS

Though it is usually best to load device drivers after QEMM, some drivers (like the ones that
manage some 80386 conversion hardware) must be loaded before QEMM. These drivers can
obscure information that QEMM needs to enable the StealthROM feature.

Placed before QEMM386.SYS in the CONFIG.SYS, HOOKROM will gather the necessary
information for QEMM386.SYS and prevent this special driver from interfering with the
StealthROM process.

B) Add the parameter "XSTI=XX" (where "XX" is the number of the interrupt reported in the
message) to the QEMM386.SYS line of the CONFIG.SYS, then add an appropriate exclude
statement to keep QEMM from mapping over the portion of the address space where the
ROM handler for interrupt XX resides. (See the section "HOW DO I FIND THE APPROPRIATE
EXCLUDE?" later in this document.)

It may also be possible to reconfigure your system in such a way that the ROM no longer
redirects an interrupt into RAM. This is the case with the Invisible Network. (See "KNOWN
USES FOR XSTI" near the end of this technical bulletin.) It is also possible that a program you
are trying to run, or even your operating system, wants to have a particular interrupt remain
unStealthed. XSTI, with the appropriate exclude, is necessary to get your program, or
operating system, working with StealthROM.

C) Add the following parameters to the QEMM device line in your CONFIG.SYS file: XSTI=70
XSTI=74 XSTI=75 XSTI=76

A typical QEMM line would look like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=70 XSTI=74 XSTI=75 XSTI=76
[all on the same line]

HOW DO I FIND THE "APPROPRIATE EXCLUDE?"
You find the appropriate exclude by excluding all the address space occupied by ROMs, using
the parameter FSTC, and doing an Analysis. The first thing you need to do is locate all your
ROMs. You can do this by looking at the First Meg/Overview screen of Manifest. Those with
non-Microchannel machines and VGA video typically have a system ROM at F000-FFFF and a
video ROM at C000-C7FF. Those with PS/2s or other Microchannel machines typically have
one ROM at E000-FFFF. Add-on devices, such as some disk controller cards and network
cards, may also have ROMs, which you must exclude as well.

A typical QEMM line for a non-Microchannel machine is:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=XX X=F000-FFFF X=C000- C7FF
FSTC [all on the same line]

On a PS/2 or most Microchannel machines, the line will look like this:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=XX X=E000-FFFF FSTC

In the above examples, XX is replaced with the interrupt reported in the QEMM error
message.

Reboot your computer with this CONFIG.SYS. StealthROM should work this time. Use your
computer for a while, then look at the QEMM/Analysis screen of Manifest. You will see a chart
that looks something like this:

                n=0123 4567 89AB CDEF
0n00 OOOO OOOO OOOO OOOO
1n00 OOOO OOOO OOOO OOOO
2n00 OOOO OOOO OOOO OOOO
3n00 OOOO OOOO OOOO OOOO
4n00 OOOO OOOO OOOO OOOO
5n00 OOOO OOOO OOOO OOOO
6n00 OOOO OOOO OOOO OOOO
7n00 OOOO OOOO OOOO OOOO
8n00 OOOO OOOO OOOO OOOO
9n00 OOOO OOOO OOOO OOOO
An00 OOOO OOOO OOOO OOOO
Bn00 OOOO OOOO OOOO OOOO
Cn00    I I    I    I    I    I I I    OOOO OOOO
Dn00 OOOO OOOO OOOO OOOO
En00 OOOO OOOO OOOO OOOO
Fn00    I    I    I    I I    I I    I    OO I I    I    I I O

Consulting the ANALYSIS section of your Manifest or QEMM manual, you will read that an "I"
indicates a portion of the address space that HAS NOT been accessed and an "O" indicates a
portion of the address space that HAS been accessed. You must exclude that portion of the
address space in the eXcluded ROMs where you now see "O"s.

In this example (which presumes that the ROMs were located from C000-C7FF and F000-

FFFF), the appropriate exclude is "X=F800- F9FF", an 8K portion of the address space. This is
the portion of the address space where the ROM handler for the interrupt XX resides. Our
QEMM line, with appropriate excludes, would read as follows:

DEVICE=C:\QEMM\QEMM386.SYS RAM ST:M XSTI=XX X=F800-F9FF

PLEASE NOTE: The FSTC parameter is used only during this analysis process and should be
removed afterward. Because the last 64 bytes of the First Meg address space (in FFFC-FFFF)
is still addressed directly with StealthROM, the last 4K piece of the QEMM/Analysis screen
will always have an "O" in it, whether an exclude is appropriate or not.

ALSO NOTE: This procedure IS NOT used to find INCLUDES in portions of the address space
NOT occupied by Stealthed ROMs. If you wish to experiment with INCLUDES (in order to gain
additional High RAM) you must perform a complete analysis as described in the ANALYSIS
section of the QEMM or Manifest manual.

WHAT IF THERE ARE NO "O"S?
This would mean the ROM handler for interrupt XX has been replaced by a new interrupt
handler, and the one in the ROM is not being accessed at all. No exclude is necessary in this
case.

KNOWN USES FOR XSTI:

INVISIBLE NETWORK

MS-DOS 5 ON SOME ZENITH MACHINES

VIDEO ACCELERATOR DRIVERS (such as SPEED_UP.SYS, RAMBIOS.SYS,
FASTBIOS.SYS.)

If you are using any of these products, please refer to PRODUCTS.TEC for additional
information.

All you need to know to use the XSTI parameter is contained above. A long, highly technical
explanation of the above issues can be found in the unabridged version of this technote
which is available through our standard support channels.

A bus-mastering hard drive does its own direct memory access (DMA) without going through
the PC's processor or its DMA controller.    The most common bus-mastering hard drives are
SCSI drives. Because bus-mastering drive controllers transfer information without going
through the PC's processor, they circumvent QEMM's memory mapping which works at the
processor level.

The frame method leaves the system, video, and disk ROMs in place. QEMM places the EMS
page frame so that it lies on top of a ROM's address space. When the ROM at the location of
the page frame is needed, QEMM saves the current contents of the page frame and restores
the ROM to its original location. The ROM code then executes normally. When the ROM
routine is finished, QEMM restores the previous contents of the page frame. The frame
method typically provides 48K-64K of extra High RAM and is provided for systems that are
incompatible with the mapping method.

StealthROM's mapping method maps system, video, and disk ROMs and any other
Stealthable ROMs out of the first megabyte of memory. When the system needs the ROM,
QEMM maps the appropriate ROM code into the EMS page frame. The ROM code then has a
valid real mode address at which it can execute normally. When the ROM routine is finished,
QEMM restores the previous contents of the page frame. This mapping method typically
provides 83K-115K of extra High RAM. If your system is not compatible with the mapping
method, try the frame method.

Multiple Configurations
QEMM Setup has detected that your CONFIG.SYS file contains multiple configuration paths.   
Because the QEMM386.SYS device driver may be in more than one of these paths, you need
to tell QEMM Setup which path you want to modify, in the event that the changes you
specify will alter the QEMM386.SYS device line.   
To select an existing configuration path:

Choose the configuraton you want, then select Continue.
To create a new configuration path:

Select highlight one of the existing paths and select Create a new path from the
selected existing path. Then type a unique name for the new path in the field
below. The name can be up to 32 characters long and can consist of more than one
word. When you choose this option, QEMM Setup will add the new path to your
CONFIG.SYS file. See your DOS manual for information on how to modify your
CONFIGF.SYS and AUTOEXEC.BAT files for multiple configurations.   

If you create a new configuration path, you should run Optimize and select the new
configuration path. You will be prompted to run Optimize when you exit QEMM Setup.

Certain PCs devote 384K of RAM to shadow memory. Shadow memory is a hardware feature
for speeding up the execution of ROM code by copying that code from ROMs to faster RAM.

Top memory is a kind of memory found on certain systems--notably, some Compaqs and
some machines with Micronics motherboards. Top memory is used to speed up ROMs and
also used by some pieces of system software.

